blob: 615984e13ddacc8b81d727e6390fef6ab616672f [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import logging
import re
from typing import Any, cast, ClassVar, TYPE_CHECKING
import pandas as pd
from flask import current_app
from flask_babel import gettext as _
from superset.common.chart_data import ChartDataResultFormat
from superset.common.db_query_status import QueryStatus
from superset.common.query_actions import get_query_results
from superset.common.utils.query_cache_manager import QueryCacheManager
from superset.common.utils.time_range_utils import get_since_until_from_time_range
from superset.constants import CACHE_DISABLED_TIMEOUT, CacheRegion
from superset.explorables.base import Explorable
from superset.daos.annotation_layer import AnnotationLayerDAO
from superset.daos.chart import ChartDAO
from superset.exceptions import (
QueryObjectValidationError,
SupersetException,
)
from superset.extensions import cache_manager, security_manager
from superset.models.helpers import QueryResult
from superset.superset_typing import AdhocColumn, AdhocMetric
from superset.utils import csv, excel
from superset.utils.cache import generate_cache_key, set_and_log_cache
from superset.utils.core import (
DatasourceType,
DTTM_ALIAS,
error_msg_from_exception,
GenericDataType,
get_column_names_from_columns,
get_column_names_from_metrics,
is_adhoc_column,
is_adhoc_metric,
)
from superset.utils.pandas_postprocessing.utils import unescape_separator
from superset.views.utils import get_viz
from superset.viz import viz_types
if TYPE_CHECKING:
from superset.common.query_context import QueryContext
from superset.common.query_object import QueryObject
logger = logging.getLogger(__name__)
class QueryContextProcessor:
"""
The query context contains the query object and additional fields necessary
to retrieve the data payload for a given viz.
"""
_query_context: QueryContext
_qc_datasource: Explorable
def __init__(self, query_context: QueryContext):
self._query_context = query_context
self._qc_datasource = query_context.datasource
cache_type: ClassVar[str] = "df"
enforce_numerical_metrics: ClassVar[bool] = True
def get_df_payload(
self, query_obj: QueryObject, force_cached: bool | None = False
) -> dict[str, Any]:
"""Handles caching around the df payload retrieval"""
if query_obj:
# Always validate the query object before generating cache key
# This ensures sanitize_clause() is called and extras are normalized
query_obj.validate()
cache_key = self.query_cache_key(query_obj)
timeout = self.get_cache_timeout()
force_query = self._query_context.force or timeout == CACHE_DISABLED_TIMEOUT
cache = QueryCacheManager.get(
key=cache_key,
region=CacheRegion.DATA,
force_query=force_query,
force_cached=force_cached,
)
if query_obj and cache_key and not cache.is_loaded:
try:
if invalid_columns := [
col
for col in get_column_names_from_columns(query_obj.columns)
+ get_column_names_from_metrics(query_obj.metrics or [])
if (
col not in self._qc_datasource.column_names
and col != DTTM_ALIAS
)
]:
raise QueryObjectValidationError(
_(
"Columns missing in dataset: %(invalid_columns)s",
invalid_columns=invalid_columns,
)
)
query_result = self.get_query_result(query_obj)
annotation_data = self.get_annotation_data(query_obj)
cache.set_query_result(
key=cache_key,
query_result=query_result,
annotation_data=annotation_data,
force_query=force_query,
timeout=self.get_cache_timeout(),
datasource_uid=self._qc_datasource.uid,
region=CacheRegion.DATA,
)
except QueryObjectValidationError as ex:
cache.error_message = str(ex)
cache.status = QueryStatus.FAILED
# the N-dimensional DataFrame has converted into flat DataFrame
# by `flatten operator`, "comma" in the column is escaped by `escape_separator`
# the result DataFrame columns should be unescaped
label_map = {
unescape_separator(col): [
unescape_separator(col) for col in re.split(r"(?<!\\),\s", col)
]
for col in cache.df.columns.values
}
label_map.update(
{
column_name: [
(
str(query_obj.columns[idx])
if not is_adhoc_column(query_obj.columns[idx])
else cast(AdhocColumn, query_obj.columns[idx])["sqlExpression"]
),
]
for idx, column_name in enumerate(query_obj.column_names)
}
)
label_map.update(
{
metric_name: [
(
str(query_obj.metrics[idx])
if not is_adhoc_metric(query_obj.metrics[idx])
else (
str(
cast(AdhocMetric, query_obj.metrics[idx])[
"sqlExpression"
]
)
if cast(AdhocMetric, query_obj.metrics[idx])[
"expressionType"
]
== "SQL"
else metric_name
)
),
]
for idx, metric_name in enumerate(query_obj.metric_names)
if query_obj and query_obj.metrics
}
)
cache.df.columns = [unescape_separator(col) for col in cache.df.columns.values]
return {
"cache_key": cache_key,
"cached_dttm": cache.cache_dttm,
"cache_timeout": self.get_cache_timeout(),
"df": cache.df,
"applied_template_filters": cache.applied_template_filters,
"applied_filter_columns": cache.applied_filter_columns,
"rejected_filter_columns": cache.rejected_filter_columns,
"annotation_data": cache.annotation_data,
"error": cache.error_message,
"is_cached": cache.is_cached,
"query": cache.query,
"status": cache.status,
"stacktrace": cache.stacktrace,
"rowcount": len(cache.df.index),
"sql_rowcount": cache.sql_rowcount,
"from_dttm": query_obj.from_dttm,
"to_dttm": query_obj.to_dttm,
"label_map": label_map,
}
def query_cache_key(self, query_obj: QueryObject, **kwargs: Any) -> str | None:
"""
Returns a QueryObject cache key for objects in self.queries
"""
datasource = self._qc_datasource
extra_cache_keys = datasource.get_extra_cache_keys(query_obj.to_dict())
cache_key = (
query_obj.cache_key(
datasource=datasource.uid,
extra_cache_keys=extra_cache_keys,
rls=security_manager.get_rls_cache_key(datasource),
changed_on=datasource.changed_on,
**kwargs,
)
if query_obj
else None
)
return cache_key
def get_query_result(self, query_object: QueryObject) -> QueryResult:
"""
Returns a pandas dataframe based on the query object.
This method delegates to the datasource's get_query_result method,
which handles query execution, normalization, time offsets, and
post-processing.
"""
return self._qc_datasource.get_query_result(query_object)
def get_data(
self, df: pd.DataFrame, coltypes: list[GenericDataType]
) -> str | list[dict[str, Any]]:
if self._query_context.result_format in ChartDataResultFormat.table_like():
include_index = not isinstance(df.index, pd.RangeIndex)
columns = list(df.columns)
verbose_map = self._qc_datasource.data.get("verbose_map", {})
if verbose_map:
df.columns = [verbose_map.get(column, column) for column in columns]
result = None
if self._query_context.result_format == ChartDataResultFormat.CSV:
result = csv.df_to_escaped_csv(
df, index=include_index, **current_app.config["CSV_EXPORT"]
)
elif self._query_context.result_format == ChartDataResultFormat.XLSX:
excel.apply_column_types(df, coltypes)
result = excel.df_to_excel(df, **current_app.config["EXCEL_EXPORT"])
return result or ""
return df.to_dict(orient="records")
def ensure_totals_available(self) -> None:
queries_needing_totals = []
totals_queries = []
for i, query in enumerate(self._query_context.queries):
needs_totals = any(
pp.get("operation") == "contribution"
for pp in getattr(query, "post_processing", []) or []
)
if needs_totals:
queries_needing_totals.append(i)
is_totals_query = (
not query.columns and query.metrics and not query.post_processing
)
if is_totals_query:
totals_queries.append(i)
if not queries_needing_totals or not totals_queries:
return
totals_idx = totals_queries[0]
totals_query = self._query_context.queries[totals_idx]
totals_query.row_limit = None
result = self._query_context.get_query_result(totals_query)
df = result.df
totals = {
col: df[col].sum() for col in df.columns if df[col].dtype.kind in "biufc"
}
for idx in queries_needing_totals:
query = self._query_context.queries[idx]
if hasattr(query, "post_processing") and query.post_processing:
for pp in query.post_processing:
if pp.get("operation") == "contribution":
pp["options"]["contribution_totals"] = totals
def get_payload(
self,
cache_query_context: bool | None = False,
force_cached: bool = False,
) -> dict[str, Any]:
"""Returns the query results with both metadata and data"""
self.ensure_totals_available()
query_results = [
get_query_results(
query_obj.result_type or self._query_context.result_type,
self._query_context,
query_obj,
force_cached,
)
for query_obj in self._query_context.queries
]
return_value = {"queries": query_results}
if cache_query_context:
cache_key = self.cache_key()
set_and_log_cache(
cache_manager.cache,
cache_key,
{
"data": {
# setting form_data into query context cache value as well
# so that it can be used to reconstruct form_data field
# for query context object when reading from cache
"form_data": self._query_context.form_data,
**self._query_context.cache_values,
},
},
self.get_cache_timeout(),
)
return_value["cache_key"] = cache_key # type: ignore
return return_value
def get_cache_timeout(self) -> int:
if cache_timeout_rv := self._query_context.get_cache_timeout():
return cache_timeout_rv
if (
data_cache_timeout := current_app.config["DATA_CACHE_CONFIG"].get(
"CACHE_DEFAULT_TIMEOUT"
)
) is not None:
return data_cache_timeout
return current_app.config["CACHE_DEFAULT_TIMEOUT"]
def cache_key(self, **extra: Any) -> str:
"""
The QueryContext cache key is made out of the key/values from
self.cached_values, plus any other key/values in `extra`. It includes only data
required to rehydrate a QueryContext object.
"""
key_prefix = "qc-"
cache_dict = self._query_context.cache_values.copy()
cache_dict.update(extra)
return generate_cache_key(cache_dict, key_prefix)
def get_annotation_data(self, query_obj: QueryObject) -> dict[str, Any]:
annotation_data: dict[str, Any] = self.get_native_annotation_data(query_obj)
for annotation_layer in [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] in ("line", "table")
]:
name = annotation_layer["name"]
annotation_data[name] = self.get_viz_annotation_data(
annotation_layer, self._query_context.force
)
return annotation_data
@staticmethod
def get_native_annotation_data(query_obj: QueryObject) -> dict[str, Any]:
annotation_data = {}
annotation_layers = [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] == "NATIVE"
]
layer_ids = [layer["value"] for layer in annotation_layers]
layer_objects = {
layer_object.id: layer_object
for layer_object in AnnotationLayerDAO.find_by_ids(layer_ids)
}
# annotations
for layer in annotation_layers:
layer_id = layer["value"]
layer_name = layer["name"]
columns = [
"start_dttm",
"end_dttm",
"short_descr",
"long_descr",
"json_metadata",
]
layer_object = layer_objects[layer_id]
records = [
{column: getattr(annotation, column) for column in columns}
for annotation in layer_object.annotation
]
result = {"columns": columns, "records": records}
annotation_data[layer_name] = result
return annotation_data
@staticmethod
def get_viz_annotation_data( # noqa: C901
annotation_layer: dict[str, Any], force: bool
) -> dict[str, Any]:
# pylint: disable=import-outside-toplevel
from superset.commands.chart.data.get_data_command import ChartDataCommand
if not (chart := ChartDAO.find_by_id(annotation_layer["value"])):
raise QueryObjectValidationError(
_(
f"""Chart with ID {annotation_layer["value"]} (referenced by
annotation layer '{annotation_layer["name"]}') was not found.
Please verify that the chart exists and is accessible."""
)
)
try:
if chart.viz_type in viz_types:
if not chart.datasource:
raise QueryObjectValidationError(
_(
f"""The dataset for chart ID {chart.id} (referenced by
annotation layer '{annotation_layer["name"]}') was
not found. Please check that the dataset exists and
is accessible."""
)
)
form_data = chart.form_data.copy()
form_data.update(annotation_layer.get("overrides", {}))
payload = get_viz(
datasource_type=chart.datasource.type,
datasource_id=chart.datasource.id,
form_data=form_data,
force=force,
).get_payload()
return payload["data"]
if not (query_context := chart.get_query_context()):
raise QueryObjectValidationError(
_(
f"""The query context for chart ID {chart.id} (referenced
by annotation layer '{annotation_layer["name"]}') was not found.
Please ensure the chart is properly configured and has a valid
query context."""
)
)
if overrides := annotation_layer.get("overrides"):
if time_grain_sqla := overrides.get("time_grain_sqla"):
for query_object in query_context.queries:
query_object.extras["time_grain_sqla"] = time_grain_sqla
if time_range := overrides.get("time_range"):
from_dttm, to_dttm = get_since_until_from_time_range(time_range)
for query_object in query_context.queries:
query_object.from_dttm = from_dttm
query_object.to_dttm = to_dttm
query_context.force = force
command = ChartDataCommand(query_context)
command.validate()
payload = command.run()
return {"records": payload["queries"][0]["data"]}
except SupersetException as ex:
raise QueryObjectValidationError(error_msg_from_exception(ex)) from ex
def raise_for_access(self) -> None:
"""
Raise an exception if the user cannot access the resource.
:raises SupersetSecurityException: If the user cannot access the resource
"""
for query in self._query_context.queries:
query.validate()
if self._qc_datasource.type == DatasourceType.QUERY:
security_manager.raise_for_access(datasource=self._qc_datasource)
else:
security_manager.raise_for_access(query_context=self._query_context)