blob: deb6d3d0b4eafb17edead945c80065497e7c4bfb [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datetime import datetime, timezone
import pandas as pd
from pandas.api.types import is_numeric_dtype
from superset.utils.core import GenericDataType
from superset.utils.excel import apply_column_types, df_to_excel
def test_timezone_conversion() -> None:
"""
Test that columns with timezones are converted to a string.
"""
df = pd.DataFrame({"dt": [datetime(2023, 1, 1, 0, 0, tzinfo=timezone.utc)]})
apply_column_types(df, [GenericDataType.TEMPORAL])
contents = df_to_excel(df)
assert pd.read_excel(contents)["dt"][0] == "2023-01-01 00:00:00+00:00"
def test_quote_formulas() -> None:
"""
Test that formulas are quoted in Excel.
"""
df = pd.DataFrame({"formula": ["=SUM(A1:A2)", "normal", "@SUM(A1:A2)"]})
contents = df_to_excel(df)
assert pd.read_excel(contents)["formula"].tolist() == [
"'=SUM(A1:A2)",
"normal",
"'@SUM(A1:A2)",
]
def test_column_data_types_with_one_numeric_column():
df = pd.DataFrame(
{
"col0": ["123", "1", "2", "3"],
"col1": ["456", "5.67", "0", ".45"],
"col2": [
datetime(2023, 1, 1, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 2, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 3, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 4, 0, 0, tzinfo=timezone.utc),
],
"col3": ["True", "False", "True", "False"],
}
)
coltypes: list[GenericDataType] = [
GenericDataType.STRING,
GenericDataType.NUMERIC,
GenericDataType.TEMPORAL,
GenericDataType.BOOLEAN,
]
# only col1 should be converted to numeric, according to coltypes definition
assert not is_numeric_dtype(df["col1"])
apply_column_types(df, coltypes)
assert not is_numeric_dtype(df["col0"])
assert is_numeric_dtype(df["col1"])
assert not is_numeric_dtype(df["col2"])
assert not is_numeric_dtype(df["col3"])
def test_column_data_types_with_failing_conversion():
df = pd.DataFrame(
{
"col0": ["123", "1", "2", "3"],
"col1": ["456", "non_numeric_value", "0", ".45"],
"col2": [
datetime(2023, 1, 1, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 2, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 3, 0, 0, tzinfo=timezone.utc),
datetime(2023, 1, 4, 0, 0, tzinfo=timezone.utc),
],
"col3": ["True", "False", "True", "False"],
}
)
coltypes: list[GenericDataType] = [
GenericDataType.STRING,
GenericDataType.NUMERIC,
GenericDataType.TEMPORAL,
GenericDataType.BOOLEAN,
]
# should not fail neither convert
assert not is_numeric_dtype(df["col1"])
apply_column_types(df, coltypes)
assert not is_numeric_dtype(df["col0"])
assert not is_numeric_dtype(df["col1"])
assert not is_numeric_dtype(df["col2"])
assert not is_numeric_dtype(df["col3"])