blob: bdec8e47d2a01762b7e9542c97ae6ac6f4707ce7 [file] [log] [blame]
/*
* sorts.c: all sorts of sorts
*
* ====================================================================
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
* ====================================================================
*/
#include <apr_pools.h>
#include <apr_hash.h>
#include <apr_tables.h>
#include <stdlib.h> /* for qsort() */
#include <assert.h>
#include "svn_hash.h"
#include "svn_path.h"
#include "svn_sorts.h"
#include "svn_error.h"
/*** svn_sort__hash() ***/
/* (Should this be a permanent part of APR?)
OK, folks, here's what's going on. APR hash tables hash on
key/klen objects, and store associated generic values. They work
great, but they have no ordering.
The point of this exercise is to somehow arrange a hash's keys into
an "ordered list" of some kind -- in this case, a nicely sorted
one.
We're using APR arrays, therefore, because that's what they are:
ordered lists. However, what "keys" should we put in the array?
Clearly, (const char *) objects aren't general enough. Or rather,
they're not as general as APR's hash implementation, which stores
(void *)/length as keys. We don't want to lose this information.
Therefore, it makes sense to store pointers to {void *, size_t}
structures in our array. No such apr object exists... BUT... if we
can use a new type svn_sort__item_t which contains {char *, size_t, void
*}. If store these objects in our array, we get the hash value
*for free*. When looping over the final array, we don't need to
call apr_hash_get(). Major bonus!
*/
int
svn_sort_compare_items_as_paths(const svn_sort__item_t *a,
const svn_sort__item_t *b)
{
const char *astr, *bstr;
astr = a->key;
bstr = b->key;
assert(astr[a->klen] == '\0');
assert(bstr[b->klen] == '\0');
return svn_path_compare_paths(astr, bstr);
}
int
svn_sort_compare_items_lexically(const svn_sort__item_t *a,
const svn_sort__item_t *b)
{
int val;
apr_size_t len;
/* Compare bytes of a's key and b's key up to the common length. */
len = (a->klen < b->klen) ? a->klen : b->klen;
val = memcmp(a->key, b->key, len);
if (val != 0)
return val;
/* They match up until one of them ends; whichever is longer is greater. */
return (a->klen < b->klen) ? -1 : (a->klen > b->klen) ? 1 : 0;
}
int
svn_sort_compare_revisions(const void *a, const void *b)
{
svn_revnum_t a_rev = *(const svn_revnum_t *)a;
svn_revnum_t b_rev = *(const svn_revnum_t *)b;
if (a_rev == b_rev)
return 0;
return a_rev < b_rev ? 1 : -1;
}
int
svn_sort_compare_paths(const void *a, const void *b)
{
const char *item1 = *((const char * const *) a);
const char *item2 = *((const char * const *) b);
return svn_path_compare_paths(item1, item2);
}
int
svn_sort_compare_ranges(const void *a, const void *b)
{
const svn_merge_range_t *item1 = *((const svn_merge_range_t * const *) a);
const svn_merge_range_t *item2 = *((const svn_merge_range_t * const *) b);
if (item1->start == item2->start
&& item1->end == item2->end)
return 0;
if (item1->start == item2->start)
return item1->end < item2->end ? -1 : 1;
return item1->start < item2->start ? -1 : 1;
}
apr_array_header_t *
svn_sort__hash(apr_hash_t *ht,
int (*comparison_func)(const svn_sort__item_t *,
const svn_sort__item_t *),
apr_pool_t *pool)
{
apr_hash_index_t *hi;
apr_array_header_t *ary;
svn_boolean_t sorted;
svn_sort__item_t *prev_item;
/* allocate an array with enough elements to hold all the keys. */
ary = apr_array_make(pool, apr_hash_count(ht), sizeof(svn_sort__item_t));
/* loop over hash table and push all keys into the array */
sorted = TRUE;
prev_item = NULL;
for (hi = apr_hash_first(pool, ht); hi; hi = apr_hash_next(hi))
{
svn_sort__item_t *item = apr_array_push(ary);
apr_hash_this(hi, &item->key, &item->klen, &item->value);
if (prev_item == NULL)
{
prev_item = item;
continue;
}
if (sorted)
{
sorted = (comparison_func(prev_item, item) < 0);
prev_item = item;
}
}
/* quicksort the array if it isn't already sorted. */
if (!sorted)
qsort(ary->elts, ary->nelts, ary->elt_size,
(int (*)(const void *, const void *))comparison_func);
return ary;
}
/* Return the lowest index at which the element *KEY should be inserted into
the array at BASE which has NELTS elements of size ELT_SIZE bytes each,
according to the ordering defined by COMPARE_FUNC.
0 <= NELTS <= INT_MAX, 1 <= ELT_SIZE <= INT_MAX.
The array must already be sorted in the ordering defined by COMPARE_FUNC.
COMPARE_FUNC is defined as for the C stdlib function bsearch().
Note: This function is modeled on bsearch() and on lower_bound() in the
C++ STL.
*/
static int
bsearch_lower_bound(const void *key,
const void *base,
int nelts,
int elt_size,
int (*compare_func)(const void *, const void *))
{
int lower = 0;
int upper = nelts - 1;
/* Binary search for the lowest position at which to insert KEY. */
while (lower <= upper)
{
int try = lower + (upper - lower) / 2; /* careful to avoid overflow */
int cmp = compare_func((const char *)base + try * elt_size, key);
if (cmp < 0)
lower = try + 1;
else
upper = try - 1;
}
assert(lower == upper + 1);
return lower;
}
int
svn_sort__bsearch_lower_bound(const void *key,
const apr_array_header_t *array,
int (*compare_func)(const void *, const void *))
{
return bsearch_lower_bound(key,
array->elts, array->nelts, array->elt_size,
compare_func);
}
void
svn_sort__array_insert(const void *new_element,
apr_array_header_t *array,
int insert_index)
{
int elements_to_move;
char *new_position;
assert(0 <= insert_index && insert_index <= array->nelts);
elements_to_move = array->nelts - insert_index; /* before bumping nelts */
/* Grow the array, allocating a new space at the end. Note: this can
reallocate the array's "elts" at a different address. */
apr_array_push(array);
/* Move the elements after INSERT_INDEX along. (When elements_to_move == 0,
this is a no-op.) */
new_position = (char *)array->elts + insert_index * array->elt_size;
memmove(new_position + array->elt_size, new_position,
array->elt_size * elements_to_move);
/* Copy in the new element */
memcpy(new_position, new_element, array->elt_size);
}
void
svn_sort__array_delete(apr_array_header_t *arr,
int delete_index,
int elements_to_delete)
{
/* Do we have a valid index and are there enough elements? */
if (delete_index >= 0
&& delete_index < arr->nelts
&& elements_to_delete > 0
&& (elements_to_delete + delete_index) <= arr->nelts)
{
/* If we are not deleting a block of elements that extends to the end
of the array, then we need to move the remaining elements to keep
the array contiguous. */
if ((elements_to_delete + delete_index) < arr->nelts)
memmove(
arr->elts + arr->elt_size * delete_index,
arr->elts + (arr->elt_size * (delete_index + elements_to_delete)),
arr->elt_size * (arr->nelts - elements_to_delete - delete_index));
/* Delete the last ELEMENTS_TO_DELETE elements. */
arr->nelts -= elements_to_delete;
}
}
void
svn_sort__array_reverse(apr_array_header_t *array,
apr_pool_t *scratch_pool)
{
int i;
if (array->elt_size == sizeof(void *))
{
for (i = 0; i < array->nelts / 2; i++)
{
int swap_index = array->nelts - i - 1;
void *tmp = APR_ARRAY_IDX(array, i, void *);
APR_ARRAY_IDX(array, i, void *) =
APR_ARRAY_IDX(array, swap_index, void *);
APR_ARRAY_IDX(array, swap_index, void *) = tmp;
}
}
else
{
apr_size_t sz = array->elt_size;
char *tmp = apr_palloc(scratch_pool, sz);
for (i = 0; i < array->nelts / 2; i++)
{
int swap_index = array->nelts - i - 1;
char *x = array->elts + (sz * i);
char *y = array->elts + (sz * swap_index);
memcpy(tmp, x, sz);
memcpy(x, y, sz);
memcpy(y, tmp, sz);
}
}
}