| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| # To run this example use |
| # ./bin/spark-submit examples/src/main/r/ml.R |
| |
| # Load SparkR library into your R session |
| library(SparkR) |
| |
| # Initialize SparkSession |
| sparkR.session(appName = "SparkR-ML-example") |
| |
| ############################ spark.glm and glm ############################################## |
| # $example on:glm$ |
| irisDF <- suppressWarnings(createDataFrame(iris)) |
| # Fit a generalized linear model of family "gaussian" with spark.glm |
| gaussianDF <- irisDF |
| gaussianTestDF <- irisDF |
| gaussianGLM <- spark.glm(gaussianDF, Sepal_Length ~ Sepal_Width + Species, family = "gaussian") |
| |
| # Model summary |
| summary(gaussianGLM) |
| |
| # Prediction |
| gaussianPredictions <- predict(gaussianGLM, gaussianTestDF) |
| showDF(gaussianPredictions) |
| |
| # Fit a generalized linear model with glm (R-compliant) |
| gaussianGLM2 <- glm(Sepal_Length ~ Sepal_Width + Species, gaussianDF, family = "gaussian") |
| summary(gaussianGLM2) |
| |
| # Fit a generalized linear model of family "binomial" with spark.glm |
| binomialDF <- filter(irisDF, irisDF$Species != "setosa") |
| binomialTestDF <- binomialDF |
| binomialGLM <- spark.glm(binomialDF, Species ~ Sepal_Length + Sepal_Width, family = "binomial") |
| |
| # Model summary |
| summary(binomialGLM) |
| |
| # Prediction |
| binomialPredictions <- predict(binomialGLM, binomialTestDF) |
| showDF(binomialPredictions) |
| # $example off:glm$ |
| ############################ spark.survreg ############################################## |
| # $example on:survreg$ |
| # Use the ovarian dataset available in R survival package |
| library(survival) |
| |
| # Fit an accelerated failure time (AFT) survival regression model with spark.survreg |
| ovarianDF <- suppressWarnings(createDataFrame(ovarian)) |
| aftDF <- ovarianDF |
| aftTestDF <- ovarianDF |
| aftModel <- spark.survreg(aftDF, Surv(futime, fustat) ~ ecog_ps + rx) |
| |
| # Model summary |
| summary(aftModel) |
| |
| # Prediction |
| aftPredictions <- predict(aftModel, aftTestDF) |
| showDF(aftPredictions) |
| # $example off:survreg$ |
| ############################ spark.naiveBayes ############################################## |
| # $example on:naiveBayes$ |
| # Fit a Bernoulli naive Bayes model with spark.naiveBayes |
| titanic <- as.data.frame(Titanic) |
| titanicDF <- createDataFrame(titanic[titanic$Freq > 0, -5]) |
| nbDF <- titanicDF |
| nbTestDF <- titanicDF |
| nbModel <- spark.naiveBayes(nbDF, Survived ~ Class + Sex + Age) |
| |
| # Model summary |
| summary(nbModel) |
| |
| # Prediction |
| nbPredictions <- predict(nbModel, nbTestDF) |
| showDF(nbPredictions) |
| # $example off:naiveBayes$ |
| ############################ spark.kmeans ############################################## |
| # $example on:kmeans$ |
| # Fit a k-means model with spark.kmeans |
| irisDF <- suppressWarnings(createDataFrame(iris)) |
| kmeansDF <- irisDF |
| kmeansTestDF <- irisDF |
| kmeansModel <- spark.kmeans(kmeansDF, ~ Sepal_Length + Sepal_Width + Petal_Length + Petal_Width, |
| k = 3) |
| |
| # Model summary |
| summary(kmeansModel) |
| |
| # Get fitted result from the k-means model |
| showDF(fitted(kmeansModel)) |
| |
| # Prediction |
| kmeansPredictions <- predict(kmeansModel, kmeansTestDF) |
| showDF(kmeansPredictions) |
| # $example off:kmeans$ |
| ############################ model read/write ############################################## |
| # $example on:read_write$ |
| irisDF <- suppressWarnings(createDataFrame(iris)) |
| # Fit a generalized linear model of family "gaussian" with spark.glm |
| gaussianDF <- irisDF |
| gaussianTestDF <- irisDF |
| gaussianGLM <- spark.glm(gaussianDF, Sepal_Length ~ Sepal_Width + Species, family = "gaussian") |
| |
| # Save and then load a fitted MLlib model |
| modelPath <- tempfile(pattern = "ml", fileext = ".tmp") |
| write.ml(gaussianGLM, modelPath) |
| gaussianGLM2 <- read.ml(modelPath) |
| |
| # Check model summary |
| summary(gaussianGLM2) |
| |
| # Check model prediction |
| gaussianPredictions <- predict(gaussianGLM2, gaussianTestDF) |
| showDF(gaussianPredictions) |
| |
| unlink(modelPath) |
| # $example off:read_write$ |
| ############################ fit models with spark.lapply ##################################### |
| |
| # Perform distributed training of multiple models with spark.lapply |
| families <- c("gaussian", "poisson") |
| train <- function(family) { |
| model <- glm(Sepal.Length ~ Sepal.Width + Species, iris, family = family) |
| summary(model) |
| } |
| model.summaries <- spark.lapply(families, train) |
| |
| # Print the summary of each model |
| print(model.summaries) |
| |
| |
| # Stop the SparkSession now |
| sparkR.session.stop() |