| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from __future__ import print_function |
| |
| import sys |
| |
| from pyspark import SparkContext |
| from pyspark.ml.classification import LogisticRegression |
| from pyspark.mllib.evaluation import MulticlassMetrics |
| from pyspark.ml.feature import StringIndexer |
| from pyspark.mllib.util import MLUtils |
| from pyspark.sql import SQLContext |
| |
| """ |
| A simple example demonstrating a logistic regression with elastic net regularization Pipeline. |
| Run with: |
| bin/spark-submit examples/src/main/python/ml/logistic_regression.py |
| """ |
| |
| if __name__ == "__main__": |
| |
| if len(sys.argv) > 1: |
| print("Usage: logistic_regression", file=sys.stderr) |
| exit(-1) |
| |
| sc = SparkContext(appName="PythonLogisticRegressionExample") |
| sqlContext = SQLContext(sc) |
| |
| # Load and parse the data file into a dataframe. |
| df = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF() |
| |
| # Map labels into an indexed column of labels in [0, numLabels) |
| stringIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel") |
| si_model = stringIndexer.fit(df) |
| td = si_model.transform(df) |
| [training, test] = td.randomSplit([0.7, 0.3]) |
| |
| lr = LogisticRegression(maxIter=100, regParam=0.3).setLabelCol("indexedLabel") |
| lr.setElasticNetParam(0.8) |
| |
| # Fit the model |
| lrModel = lr.fit(training) |
| |
| predictionAndLabels = lrModel.transform(test).select("prediction", "indexedLabel") \ |
| .map(lambda x: (x.prediction, x.indexedLabel)) |
| |
| metrics = MulticlassMetrics(predictionAndLabels) |
| print("weighted f-measure %.3f" % metrics.weightedFMeasure()) |
| print("precision %s" % metrics.precision()) |
| print("recall %s" % metrics.recall()) |
| |
| sc.stop() |