| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from __future__ import print_function |
| |
| import sys |
| import re |
| |
| import numpy as np |
| from pyspark import SparkContext |
| from pyspark.ml.clustering import KMeans, KMeansModel |
| from pyspark.mllib.linalg import VectorUDT, _convert_to_vector |
| from pyspark.sql import SQLContext |
| from pyspark.sql.types import Row, StructField, StructType |
| |
| """ |
| A simple example demonstrating a k-means clustering. |
| Run with: |
| bin/spark-submit examples/src/main/python/ml/kmeans_example.py <input> <k> |
| |
| This example requires NumPy (http://www.numpy.org/). |
| """ |
| |
| |
| def parseVector(line): |
| array = np.array([float(x) for x in line.split(' ')]) |
| return _convert_to_vector(array) |
| |
| |
| if __name__ == "__main__": |
| |
| FEATURES_COL = "features" |
| |
| if len(sys.argv) != 3: |
| print("Usage: kmeans_example.py <file> <k>", file=sys.stderr) |
| exit(-1) |
| path = sys.argv[1] |
| k = sys.argv[2] |
| |
| sc = SparkContext(appName="PythonKMeansExample") |
| sqlContext = SQLContext(sc) |
| |
| lines = sc.textFile(path) |
| data = lines.map(parseVector) |
| row_rdd = data.map(lambda x: Row(x)) |
| schema = StructType([StructField(FEATURES_COL, VectorUDT(), False)]) |
| df = sqlContext.createDataFrame(row_rdd, schema) |
| |
| kmeans = KMeans().setK(2).setSeed(1).setFeaturesCol(FEATURES_COL) |
| model = kmeans.fit(df) |
| centers = model.clusterCenters() |
| |
| print("Cluster Centers: ") |
| for center in centers: |
| print(center) |
| |
| sc.stop() |