| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import warnings |
| import random |
| |
| if sys.version >= '3': |
| basestring = unicode = str |
| long = int |
| from functools import reduce |
| else: |
| from itertools import imap as map |
| |
| from pyspark.rdd import RDD, _load_from_socket, ignore_unicode_prefix |
| from pyspark.serializers import BatchedSerializer, PickleSerializer, UTF8Deserializer |
| from pyspark.storagelevel import StorageLevel |
| from pyspark.traceback_utils import SCCallSiteSync |
| from pyspark.sql import since |
| from pyspark.sql.types import _parse_datatype_json_string |
| from pyspark.sql.column import Column, _to_seq, _to_java_column |
| from pyspark.sql.readwriter import DataFrameWriter |
| from pyspark.sql.types import * |
| |
| __all__ = ["DataFrame", "SchemaRDD", "DataFrameNaFunctions", "DataFrameStatFunctions"] |
| |
| |
| class DataFrame(object): |
| """A distributed collection of data grouped into named columns. |
| |
| A :class:`DataFrame` is equivalent to a relational table in Spark SQL, |
| and can be created using various functions in :class:`SQLContext`:: |
| |
| people = sqlContext.read.parquet("...") |
| |
| Once created, it can be manipulated using the various domain-specific-language |
| (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. |
| |
| To select a column from the data frame, use the apply method:: |
| |
| ageCol = people.age |
| |
| A more concrete example:: |
| |
| # To create DataFrame using SQLContext |
| people = sqlContext.read.parquet("...") |
| department = sqlContext.read.parquet("...") |
| |
| people.filter(people.age > 30).join(department, people.deptId == department.id)) \ |
| .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) |
| |
| .. note:: Experimental |
| |
| .. versionadded:: 1.3 |
| """ |
| |
| def __init__(self, jdf, sql_ctx): |
| self._jdf = jdf |
| self.sql_ctx = sql_ctx |
| self._sc = sql_ctx and sql_ctx._sc |
| self.is_cached = False |
| self._schema = None # initialized lazily |
| self._lazy_rdd = None |
| |
| @property |
| @since(1.3) |
| def rdd(self): |
| """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. |
| """ |
| if self._lazy_rdd is None: |
| jrdd = self._jdf.javaToPython() |
| self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) |
| return self._lazy_rdd |
| |
| @property |
| @since("1.3.1") |
| def na(self): |
| """Returns a :class:`DataFrameNaFunctions` for handling missing values. |
| """ |
| return DataFrameNaFunctions(self) |
| |
| @property |
| @since(1.4) |
| def stat(self): |
| """Returns a :class:`DataFrameStatFunctions` for statistic functions. |
| """ |
| return DataFrameStatFunctions(self) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def toJSON(self, use_unicode=True): |
| """Converts a :class:`DataFrame` into a :class:`RDD` of string. |
| |
| Each row is turned into a JSON document as one element in the returned RDD. |
| |
| >>> df.toJSON().first() |
| u'{"age":2,"name":"Alice"}' |
| """ |
| rdd = self._jdf.toJSON() |
| return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) |
| |
| def saveAsParquetFile(self, path): |
| """Saves the contents as a Parquet file, preserving the schema. |
| |
| .. note:: Deprecated in 1.4, use :func:`DataFrameWriter.parquet` instead. |
| """ |
| warnings.warn("saveAsParquetFile is deprecated. Use write.parquet() instead.") |
| self._jdf.saveAsParquetFile(path) |
| |
| @since(1.3) |
| def registerTempTable(self, name): |
| """Registers this RDD as a temporary table using the given name. |
| |
| The lifetime of this temporary table is tied to the :class:`SQLContext` |
| that was used to create this :class:`DataFrame`. |
| |
| >>> df.registerTempTable("people") |
| >>> df2 = sqlContext.sql("select * from people") |
| >>> sorted(df.collect()) == sorted(df2.collect()) |
| True |
| """ |
| self._jdf.registerTempTable(name) |
| |
| def registerAsTable(self, name): |
| """ |
| .. note:: Deprecated in 1.4, use :func:`registerTempTable` instead. |
| """ |
| warnings.warn("Use registerTempTable instead of registerAsTable.") |
| self.registerTempTable(name) |
| |
| def insertInto(self, tableName, overwrite=False): |
| """Inserts the contents of this :class:`DataFrame` into the specified table. |
| |
| .. note:: Deprecated in 1.4, use :func:`DataFrameWriter.insertInto` instead. |
| """ |
| warnings.warn("insertInto is deprecated. Use write.insertInto() instead.") |
| self.write.insertInto(tableName, overwrite) |
| |
| def saveAsTable(self, tableName, source=None, mode="error", **options): |
| """Saves the contents of this :class:`DataFrame` to a data source as a table. |
| |
| .. note:: Deprecated in 1.4, use :func:`DataFrameWriter.saveAsTable` instead. |
| """ |
| warnings.warn("insertInto is deprecated. Use write.saveAsTable() instead.") |
| self.write.saveAsTable(tableName, source, mode, **options) |
| |
| @since(1.3) |
| def save(self, path=None, source=None, mode="error", **options): |
| """Saves the contents of the :class:`DataFrame` to a data source. |
| |
| .. note:: Deprecated in 1.4, use :func:`DataFrameWriter.save` instead. |
| """ |
| warnings.warn("insertInto is deprecated. Use write.save() instead.") |
| return self.write.save(path, source, mode, **options) |
| |
| @property |
| @since(1.4) |
| def write(self): |
| """ |
| Interface for saving the content of the :class:`DataFrame` out into external storage. |
| |
| :return: :class:`DataFrameWriter` |
| """ |
| return DataFrameWriter(self) |
| |
| @property |
| @since(1.3) |
| def schema(self): |
| """Returns the schema of this :class:`DataFrame` as a :class:`types.StructType`. |
| |
| >>> df.schema |
| StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) |
| """ |
| if self._schema is None: |
| try: |
| self._schema = _parse_datatype_json_string(self._jdf.schema().json()) |
| except AttributeError as e: |
| raise Exception( |
| "Unable to parse datatype from schema. %s" % e) |
| return self._schema |
| |
| @since(1.3) |
| def printSchema(self): |
| """Prints out the schema in the tree format. |
| |
| >>> df.printSchema() |
| root |
| |-- age: integer (nullable = true) |
| |-- name: string (nullable = true) |
| <BLANKLINE> |
| """ |
| print(self._jdf.schema().treeString()) |
| |
| @since(1.3) |
| def explain(self, extended=False): |
| """Prints the (logical and physical) plans to the console for debugging purpose. |
| |
| :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. |
| |
| >>> df.explain() |
| Scan PhysicalRDD[age#0,name#1] |
| |
| >>> df.explain(True) |
| == Parsed Logical Plan == |
| ... |
| == Analyzed Logical Plan == |
| ... |
| == Optimized Logical Plan == |
| ... |
| == Physical Plan == |
| ... |
| """ |
| if extended: |
| print(self._jdf.queryExecution().toString()) |
| else: |
| print(self._jdf.queryExecution().executedPlan().toString()) |
| |
| @since(1.3) |
| def isLocal(self): |
| """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally |
| (without any Spark executors). |
| """ |
| return self._jdf.isLocal() |
| |
| @since(1.3) |
| def show(self, n=20, truncate=True): |
| """Prints the first ``n`` rows to the console. |
| |
| :param n: Number of rows to show. |
| :param truncate: Whether truncate long strings and align cells right. |
| |
| >>> df |
| DataFrame[age: int, name: string] |
| >>> df.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| """ |
| print(self._jdf.showString(n, truncate)) |
| |
| def __repr__(self): |
| return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) |
| |
| @since(1.3) |
| def count(self): |
| """Returns the number of rows in this :class:`DataFrame`. |
| |
| >>> df.count() |
| 2 |
| """ |
| return int(self._jdf.count()) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def collect(self): |
| """Returns all the records as a list of :class:`Row`. |
| |
| >>> df.collect() |
| [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] |
| """ |
| with SCCallSiteSync(self._sc) as css: |
| port = self._sc._jvm.PythonRDD.collectAndServe(self._jdf.javaToPython().rdd()) |
| return list(_load_from_socket(port, BatchedSerializer(PickleSerializer()))) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def limit(self, num): |
| """Limits the result count to the number specified. |
| |
| >>> df.limit(1).collect() |
| [Row(age=2, name=u'Alice')] |
| >>> df.limit(0).collect() |
| [] |
| """ |
| jdf = self._jdf.limit(num) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def take(self, num): |
| """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. |
| |
| >>> df.take(2) |
| [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] |
| """ |
| with SCCallSiteSync(self._sc) as css: |
| port = self._sc._jvm.org.apache.spark.sql.execution.EvaluatePython.takeAndServe( |
| self._jdf, num) |
| return list(_load_from_socket(port, BatchedSerializer(PickleSerializer()))) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def map(self, f): |
| """ Returns a new :class:`RDD` by applying a the ``f`` function to each :class:`Row`. |
| |
| This is a shorthand for ``df.rdd.map()``. |
| |
| >>> df.map(lambda p: p.name).collect() |
| [u'Alice', u'Bob'] |
| """ |
| return self.rdd.map(f) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def flatMap(self, f): |
| """ Returns a new :class:`RDD` by first applying the ``f`` function to each :class:`Row`, |
| and then flattening the results. |
| |
| This is a shorthand for ``df.rdd.flatMap()``. |
| |
| >>> df.flatMap(lambda p: p.name).collect() |
| [u'A', u'l', u'i', u'c', u'e', u'B', u'o', u'b'] |
| """ |
| return self.rdd.flatMap(f) |
| |
| @since(1.3) |
| def mapPartitions(self, f, preservesPartitioning=False): |
| """Returns a new :class:`RDD` by applying the ``f`` function to each partition. |
| |
| This is a shorthand for ``df.rdd.mapPartitions()``. |
| |
| >>> rdd = sc.parallelize([1, 2, 3, 4], 4) |
| >>> def f(iterator): yield 1 |
| >>> rdd.mapPartitions(f).sum() |
| 4 |
| """ |
| return self.rdd.mapPartitions(f, preservesPartitioning) |
| |
| @since(1.3) |
| def foreach(self, f): |
| """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. |
| |
| This is a shorthand for ``df.rdd.foreach()``. |
| |
| >>> def f(person): |
| ... print(person.name) |
| >>> df.foreach(f) |
| """ |
| return self.rdd.foreach(f) |
| |
| @since(1.3) |
| def foreachPartition(self, f): |
| """Applies the ``f`` function to each partition of this :class:`DataFrame`. |
| |
| This a shorthand for ``df.rdd.foreachPartition()``. |
| |
| >>> def f(people): |
| ... for person in people: |
| ... print(person.name) |
| >>> df.foreachPartition(f) |
| """ |
| return self.rdd.foreachPartition(f) |
| |
| @since(1.3) |
| def cache(self): |
| """ Persists with the default storage level (C{MEMORY_ONLY_SER}). |
| """ |
| self.is_cached = True |
| self._jdf.cache() |
| return self |
| |
| @since(1.3) |
| def persist(self, storageLevel=StorageLevel.MEMORY_ONLY_SER): |
| """Sets the storage level to persist its values across operations |
| after the first time it is computed. This can only be used to assign |
| a new storage level if the RDD does not have a storage level set yet. |
| If no storage level is specified defaults to (C{MEMORY_ONLY_SER}). |
| """ |
| self.is_cached = True |
| javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) |
| self._jdf.persist(javaStorageLevel) |
| return self |
| |
| @since(1.3) |
| def unpersist(self, blocking=True): |
| """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from |
| memory and disk. |
| """ |
| self.is_cached = False |
| self._jdf.unpersist(blocking) |
| return self |
| |
| @since(1.4) |
| def coalesce(self, numPartitions): |
| """ |
| Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. |
| |
| Similar to coalesce defined on an :class:`RDD`, this operation results in a |
| narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, |
| there will not be a shuffle, instead each of the 100 new partitions will |
| claim 10 of the current partitions. |
| |
| >>> df.coalesce(1).rdd.getNumPartitions() |
| 1 |
| """ |
| return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) |
| |
| @since(1.3) |
| def repartition(self, numPartitions): |
| """Returns a new :class:`DataFrame` that has exactly ``numPartitions`` partitions. |
| |
| >>> df.repartition(10).rdd.getNumPartitions() |
| 10 |
| """ |
| return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) |
| |
| @since(1.3) |
| def distinct(self): |
| """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. |
| |
| >>> df.distinct().count() |
| 2 |
| """ |
| return DataFrame(self._jdf.distinct(), self.sql_ctx) |
| |
| @since(1.3) |
| def sample(self, withReplacement, fraction, seed=None): |
| """Returns a sampled subset of this :class:`DataFrame`. |
| |
| >>> df.sample(False, 0.5, 42).count() |
| 1 |
| """ |
| assert fraction >= 0.0, "Negative fraction value: %s" % fraction |
| seed = seed if seed is not None else random.randint(0, sys.maxsize) |
| rdd = self._jdf.sample(withReplacement, fraction, long(seed)) |
| return DataFrame(rdd, self.sql_ctx) |
| |
| @since(1.5) |
| def sampleBy(self, col, fractions, seed=None): |
| """ |
| Returns a stratified sample without replacement based on the |
| fraction given on each stratum. |
| |
| :param col: column that defines strata |
| :param fractions: |
| sampling fraction for each stratum. If a stratum is not |
| specified, we treat its fraction as zero. |
| :param seed: random seed |
| :return: a new DataFrame that represents the stratified sample |
| |
| >>> from pyspark.sql.functions import col |
| >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) |
| >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) |
| >>> sampled.groupBy("key").count().orderBy("key").show() |
| +---+-----+ |
| |key|count| |
| +---+-----+ |
| | 0| 3| |
| | 1| 8| |
| +---+-----+ |
| |
| """ |
| if not isinstance(col, str): |
| raise ValueError("col must be a string, but got %r" % type(col)) |
| if not isinstance(fractions, dict): |
| raise ValueError("fractions must be a dict but got %r" % type(fractions)) |
| for k, v in fractions.items(): |
| if not isinstance(k, (float, int, long, basestring)): |
| raise ValueError("key must be float, int, long, or string, but got %r" % type(k)) |
| fractions[k] = float(v) |
| seed = seed if seed is not None else random.randint(0, sys.maxsize) |
| return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) |
| |
| @since(1.4) |
| def randomSplit(self, weights, seed=None): |
| """Randomly splits this :class:`DataFrame` with the provided weights. |
| |
| :param weights: list of doubles as weights with which to split the DataFrame. Weights will |
| be normalized if they don't sum up to 1.0. |
| :param seed: The seed for sampling. |
| |
| >>> splits = df4.randomSplit([1.0, 2.0], 24) |
| >>> splits[0].count() |
| 1 |
| |
| >>> splits[1].count() |
| 3 |
| """ |
| for w in weights: |
| if w < 0.0: |
| raise ValueError("Weights must be positive. Found weight value: %s" % w) |
| seed = seed if seed is not None else random.randint(0, sys.maxsize) |
| rdd_array = self._jdf.randomSplit(_to_seq(self.sql_ctx._sc, weights), long(seed)) |
| return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] |
| |
| @property |
| @since(1.3) |
| def dtypes(self): |
| """Returns all column names and their data types as a list. |
| |
| >>> df.dtypes |
| [('age', 'int'), ('name', 'string')] |
| """ |
| return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] |
| |
| @property |
| @since(1.3) |
| def columns(self): |
| """Returns all column names as a list. |
| |
| >>> df.columns |
| ['age', 'name'] |
| """ |
| return [f.name for f in self.schema.fields] |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def alias(self, alias): |
| """Returns a new :class:`DataFrame` with an alias set. |
| |
| >>> from pyspark.sql.functions import * |
| >>> df_as1 = df.alias("df_as1") |
| >>> df_as2 = df.alias("df_as2") |
| >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') |
| >>> joined_df.select(col("df_as1.name"), col("df_as2.name"), col("df_as2.age")).collect() |
| [Row(name=u'Alice', name=u'Alice', age=2), Row(name=u'Bob', name=u'Bob', age=5)] |
| """ |
| assert isinstance(alias, basestring), "alias should be a string" |
| return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def join(self, other, on=None, how=None): |
| """Joins with another :class:`DataFrame`, using the given join expression. |
| |
| The following performs a full outer join between ``df1`` and ``df2``. |
| |
| :param other: Right side of the join |
| :param on: a string for join column name, a list of column names, |
| , a join expression (Column) or a list of Columns. |
| If `on` is a string or a list of string indicating the name of the join column(s), |
| the column(s) must exist on both sides, and this performs an inner equi-join. |
| :param how: str, default 'inner'. |
| One of `inner`, `outer`, `left_outer`, `right_outer`, `semijoin`. |
| |
| >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() |
| [Row(name=None, height=80), Row(name=u'Alice', height=None), Row(name=u'Bob', height=85)] |
| |
| >>> cond = [df.name == df3.name, df.age == df3.age] |
| >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() |
| [Row(name=u'Bob', age=5), Row(name=u'Alice', age=2)] |
| |
| >>> df.join(df2, 'name').select(df.name, df2.height).collect() |
| [Row(name=u'Bob', height=85)] |
| |
| >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() |
| [Row(name=u'Bob', age=5)] |
| """ |
| |
| if on is not None and not isinstance(on, list): |
| on = [on] |
| |
| if on is None or len(on) == 0: |
| jdf = self._jdf.join(other._jdf) |
| elif isinstance(on[0], basestring): |
| jdf = self._jdf.join(other._jdf, self._jseq(on)) |
| else: |
| assert isinstance(on[0], Column), "on should be Column or list of Column" |
| if len(on) > 1: |
| on = reduce(lambda x, y: x.__and__(y), on) |
| else: |
| on = on[0] |
| if how is None: |
| jdf = self._jdf.join(other._jdf, on._jc, "inner") |
| else: |
| assert isinstance(how, basestring), "how should be basestring" |
| jdf = self._jdf.join(other._jdf, on._jc, how) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def sort(self, *cols, **kwargs): |
| """Returns a new :class:`DataFrame` sorted by the specified column(s). |
| |
| :param cols: list of :class:`Column` or column names to sort by. |
| :param ascending: boolean or list of boolean (default True). |
| Sort ascending vs. descending. Specify list for multiple sort orders. |
| If a list is specified, length of the list must equal length of the `cols`. |
| |
| >>> df.sort(df.age.desc()).collect() |
| [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] |
| >>> df.sort("age", ascending=False).collect() |
| [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] |
| >>> df.orderBy(df.age.desc()).collect() |
| [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] |
| >>> from pyspark.sql.functions import * |
| >>> df.sort(asc("age")).collect() |
| [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] |
| >>> df.orderBy(desc("age"), "name").collect() |
| [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] |
| >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() |
| [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] |
| """ |
| if not cols: |
| raise ValueError("should sort by at least one column") |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| jcols = [_to_java_column(c) for c in cols] |
| ascending = kwargs.get('ascending', True) |
| if isinstance(ascending, (bool, int)): |
| if not ascending: |
| jcols = [jc.desc() for jc in jcols] |
| elif isinstance(ascending, list): |
| jcols = [jc if asc else jc.desc() |
| for asc, jc in zip(ascending, jcols)] |
| else: |
| raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) |
| |
| jdf = self._jdf.sort(self._jseq(jcols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| orderBy = sort |
| |
| def _jseq(self, cols, converter=None): |
| """Return a JVM Seq of Columns from a list of Column or names""" |
| return _to_seq(self.sql_ctx._sc, cols, converter) |
| |
| def _jmap(self, jm): |
| """Return a JVM Scala Map from a dict""" |
| return _to_scala_map(self.sql_ctx._sc, jm) |
| |
| def _jcols(self, *cols): |
| """Return a JVM Seq of Columns from a list of Column or column names |
| |
| If `cols` has only one list in it, cols[0] will be used as the list. |
| """ |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| return self._jseq(cols, _to_java_column) |
| |
| @since("1.3.1") |
| def describe(self, *cols): |
| """Computes statistics for numeric columns. |
| |
| This include count, mean, stddev, min, and max. If no columns are |
| given, this function computes statistics for all numerical columns. |
| |
| .. note:: This function is meant for exploratory data analysis, as we make no \ |
| guarantee about the backward compatibility of the schema of the resulting DataFrame. |
| |
| >>> df.describe().show() |
| +-------+---+ |
| |summary|age| |
| +-------+---+ |
| | count| 2| |
| | mean|3.5| |
| | stddev|1.5| |
| | min| 2| |
| | max| 5| |
| +-------+---+ |
| >>> df.describe(['age', 'name']).show() |
| +-------+---+-----+ |
| |summary|age| name| |
| +-------+---+-----+ |
| | count| 2| 2| |
| | mean|3.5| null| |
| | stddev|1.5| null| |
| | min| 2|Alice| |
| | max| 5| Bob| |
| +-------+---+-----+ |
| """ |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| jdf = self._jdf.describe(self._jseq(cols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def head(self, n=None): |
| """Returns the first ``n`` rows. |
| |
| :param n: int, default 1. Number of rows to return. |
| :return: If n is greater than 1, return a list of :class:`Row`. |
| If n is 1, return a single Row. |
| |
| >>> df.head() |
| Row(age=2, name=u'Alice') |
| >>> df.head(1) |
| [Row(age=2, name=u'Alice')] |
| """ |
| if n is None: |
| rs = self.head(1) |
| return rs[0] if rs else None |
| return self.take(n) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def first(self): |
| """Returns the first row as a :class:`Row`. |
| |
| >>> df.first() |
| Row(age=2, name=u'Alice') |
| """ |
| return self.head() |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def __getitem__(self, item): |
| """Returns the column as a :class:`Column`. |
| |
| >>> df.select(df['age']).collect() |
| [Row(age=2), Row(age=5)] |
| >>> df[ ["name", "age"]].collect() |
| [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] |
| >>> df[ df.age > 3 ].collect() |
| [Row(age=5, name=u'Bob')] |
| >>> df[df[0] > 3].collect() |
| [Row(age=5, name=u'Bob')] |
| """ |
| if isinstance(item, basestring): |
| jc = self._jdf.apply(item) |
| return Column(jc) |
| elif isinstance(item, Column): |
| return self.filter(item) |
| elif isinstance(item, (list, tuple)): |
| return self.select(*item) |
| elif isinstance(item, int): |
| jc = self._jdf.apply(self.columns[item]) |
| return Column(jc) |
| else: |
| raise TypeError("unexpected item type: %s" % type(item)) |
| |
| @since(1.3) |
| def __getattr__(self, name): |
| """Returns the :class:`Column` denoted by ``name``. |
| |
| >>> df.select(df.age).collect() |
| [Row(age=2), Row(age=5)] |
| """ |
| if name not in self.columns: |
| raise AttributeError( |
| "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) |
| jc = self._jdf.apply(name) |
| return Column(jc) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def select(self, *cols): |
| """Projects a set of expressions and returns a new :class:`DataFrame`. |
| |
| :param cols: list of column names (string) or expressions (:class:`Column`). |
| If one of the column names is '*', that column is expanded to include all columns |
| in the current DataFrame. |
| |
| >>> df.select('*').collect() |
| [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] |
| >>> df.select('name', 'age').collect() |
| [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] |
| >>> df.select(df.name, (df.age + 10).alias('age')).collect() |
| [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] |
| """ |
| jdf = self._jdf.select(self._jcols(*cols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @since(1.3) |
| def selectExpr(self, *expr): |
| """Projects a set of SQL expressions and returns a new :class:`DataFrame`. |
| |
| This is a variant of :func:`select` that accepts SQL expressions. |
| |
| >>> df.selectExpr("age * 2", "abs(age)").collect() |
| [Row((age * 2)=4, 'abs(age)=2), Row((age * 2)=10, 'abs(age)=5)] |
| """ |
| if len(expr) == 1 and isinstance(expr[0], list): |
| expr = expr[0] |
| jdf = self._jdf.selectExpr(self._jseq(expr)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def filter(self, condition): |
| """Filters rows using the given condition. |
| |
| :func:`where` is an alias for :func:`filter`. |
| |
| :param condition: a :class:`Column` of :class:`types.BooleanType` |
| or a string of SQL expression. |
| |
| >>> df.filter(df.age > 3).collect() |
| [Row(age=5, name=u'Bob')] |
| >>> df.where(df.age == 2).collect() |
| [Row(age=2, name=u'Alice')] |
| |
| >>> df.filter("age > 3").collect() |
| [Row(age=5, name=u'Bob')] |
| >>> df.where("age = 2").collect() |
| [Row(age=2, name=u'Alice')] |
| """ |
| if isinstance(condition, basestring): |
| jdf = self._jdf.filter(condition) |
| elif isinstance(condition, Column): |
| jdf = self._jdf.filter(condition._jc) |
| else: |
| raise TypeError("condition should be string or Column") |
| return DataFrame(jdf, self.sql_ctx) |
| |
| where = filter |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def groupBy(self, *cols): |
| """Groups the :class:`DataFrame` using the specified columns, |
| so we can run aggregation on them. See :class:`GroupedData` |
| for all the available aggregate functions. |
| |
| :func:`groupby` is an alias for :func:`groupBy`. |
| |
| :param cols: list of columns to group by. |
| Each element should be a column name (string) or an expression (:class:`Column`). |
| |
| >>> df.groupBy().avg().collect() |
| [Row(avg(age)=3.5)] |
| >>> df.groupBy('name').agg({'age': 'mean'}).collect() |
| [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] |
| >>> df.groupBy(df.name).avg().collect() |
| [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] |
| >>> df.groupBy(['name', df.age]).count().collect() |
| [Row(name=u'Bob', age=5, count=1), Row(name=u'Alice', age=2, count=1)] |
| """ |
| jgd = self._jdf.groupBy(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self.sql_ctx) |
| |
| @since(1.4) |
| def rollup(self, *cols): |
| """ |
| Create a multi-dimensional rollup for the current :class:`DataFrame` using |
| the specified columns, so we can run aggregation on them. |
| |
| >>> df.rollup('name', df.age).count().show() |
| +-----+----+-----+ |
| | name| age|count| |
| +-----+----+-----+ |
| |Alice|null| 1| |
| | Bob| 5| 1| |
| | Bob|null| 1| |
| | null|null| 2| |
| |Alice| 2| 1| |
| +-----+----+-----+ |
| """ |
| jgd = self._jdf.rollup(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self.sql_ctx) |
| |
| @since(1.4) |
| def cube(self, *cols): |
| """ |
| Create a multi-dimensional cube for the current :class:`DataFrame` using |
| the specified columns, so we can run aggregation on them. |
| |
| >>> df.cube('name', df.age).count().show() |
| +-----+----+-----+ |
| | name| age|count| |
| +-----+----+-----+ |
| | null| 2| 1| |
| |Alice|null| 1| |
| | Bob| 5| 1| |
| | Bob|null| 1| |
| | null| 5| 1| |
| | null|null| 2| |
| |Alice| 2| 1| |
| +-----+----+-----+ |
| """ |
| jgd = self._jdf.cube(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self.sql_ctx) |
| |
| @since(1.3) |
| def agg(self, *exprs): |
| """ Aggregate on the entire :class:`DataFrame` without groups |
| (shorthand for ``df.groupBy.agg()``). |
| |
| >>> df.agg({"age": "max"}).collect() |
| [Row(max(age)=5)] |
| >>> from pyspark.sql import functions as F |
| >>> df.agg(F.min(df.age)).collect() |
| [Row(min(age)=2)] |
| """ |
| return self.groupBy().agg(*exprs) |
| |
| @since(1.3) |
| def unionAll(self, other): |
| """ Return a new :class:`DataFrame` containing union of rows in this |
| frame and another frame. |
| |
| This is equivalent to `UNION ALL` in SQL. |
| """ |
| return DataFrame(self._jdf.unionAll(other._jdf), self.sql_ctx) |
| |
| @since(1.3) |
| def intersect(self, other): |
| """ Return a new :class:`DataFrame` containing rows only in |
| both this frame and another frame. |
| |
| This is equivalent to `INTERSECT` in SQL. |
| """ |
| return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) |
| |
| @since(1.3) |
| def subtract(self, other): |
| """ Return a new :class:`DataFrame` containing rows in this frame |
| but not in another frame. |
| |
| This is equivalent to `EXCEPT` in SQL. |
| """ |
| return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) |
| |
| @since(1.4) |
| def dropDuplicates(self, subset=None): |
| """Return a new :class:`DataFrame` with duplicate rows removed, |
| optionally only considering certain columns. |
| |
| >>> from pyspark.sql import Row |
| >>> df = sc.parallelize([ \ |
| Row(name='Alice', age=5, height=80), \ |
| Row(name='Alice', age=5, height=80), \ |
| Row(name='Alice', age=10, height=80)]).toDF() |
| >>> df.dropDuplicates().show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 5| 80|Alice| |
| | 10| 80|Alice| |
| +---+------+-----+ |
| |
| >>> df.dropDuplicates(['name', 'height']).show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 5| 80|Alice| |
| +---+------+-----+ |
| """ |
| if subset is None: |
| jdf = self._jdf.dropDuplicates() |
| else: |
| jdf = self._jdf.dropDuplicates(self._jseq(subset)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @since("1.3.1") |
| def dropna(self, how='any', thresh=None, subset=None): |
| """Returns a new :class:`DataFrame` omitting rows with null values. |
| :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. |
| |
| :param how: 'any' or 'all'. |
| If 'any', drop a row if it contains any nulls. |
| If 'all', drop a row only if all its values are null. |
| :param thresh: int, default None |
| If specified, drop rows that have less than `thresh` non-null values. |
| This overwrites the `how` parameter. |
| :param subset: optional list of column names to consider. |
| |
| >>> df4.na.drop().show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 10| 80|Alice| |
| +---+------+-----+ |
| """ |
| if how is not None and how not in ['any', 'all']: |
| raise ValueError("how ('" + how + "') should be 'any' or 'all'") |
| |
| if subset is None: |
| subset = self.columns |
| elif isinstance(subset, basestring): |
| subset = [subset] |
| elif not isinstance(subset, (list, tuple)): |
| raise ValueError("subset should be a list or tuple of column names") |
| |
| if thresh is None: |
| thresh = len(subset) if how == 'any' else 1 |
| |
| return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) |
| |
| @since("1.3.1") |
| def fillna(self, value, subset=None): |
| """Replace null values, alias for ``na.fill()``. |
| :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. |
| |
| :param value: int, long, float, string, or dict. |
| Value to replace null values with. |
| If the value is a dict, then `subset` is ignored and `value` must be a mapping |
| from column name (string) to replacement value. The replacement value must be |
| an int, long, float, or string. |
| :param subset: optional list of column names to consider. |
| Columns specified in subset that do not have matching data type are ignored. |
| For example, if `value` is a string, and subset contains a non-string column, |
| then the non-string column is simply ignored. |
| |
| >>> df4.na.fill(50).show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 10| 80|Alice| |
| | 5| 50| Bob| |
| | 50| 50| Tom| |
| | 50| 50| null| |
| +---+------+-----+ |
| |
| >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() |
| +---+------+-------+ |
| |age|height| name| |
| +---+------+-------+ |
| | 10| 80| Alice| |
| | 5| null| Bob| |
| | 50| null| Tom| |
| | 50| null|unknown| |
| +---+------+-------+ |
| """ |
| if not isinstance(value, (float, int, long, basestring, dict)): |
| raise ValueError("value should be a float, int, long, string, or dict") |
| |
| if isinstance(value, (int, long)): |
| value = float(value) |
| |
| if isinstance(value, dict): |
| return DataFrame(self._jdf.na().fill(value), self.sql_ctx) |
| elif subset is None: |
| return DataFrame(self._jdf.na().fill(value), self.sql_ctx) |
| else: |
| if isinstance(subset, basestring): |
| subset = [subset] |
| elif not isinstance(subset, (list, tuple)): |
| raise ValueError("subset should be a list or tuple of column names") |
| |
| return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) |
| |
| @since(1.4) |
| def replace(self, to_replace, value, subset=None): |
| """Returns a new :class:`DataFrame` replacing a value with another value. |
| :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are |
| aliases of each other. |
| |
| :param to_replace: int, long, float, string, or list. |
| Value to be replaced. |
| If the value is a dict, then `value` is ignored and `to_replace` must be a |
| mapping from column name (string) to replacement value. The value to be |
| replaced must be an int, long, float, or string. |
| :param value: int, long, float, string, or list. |
| Value to use to replace holes. |
| The replacement value must be an int, long, float, or string. If `value` is a |
| list or tuple, `value` should be of the same length with `to_replace`. |
| :param subset: optional list of column names to consider. |
| Columns specified in subset that do not have matching data type are ignored. |
| For example, if `value` is a string, and subset contains a non-string column, |
| then the non-string column is simply ignored. |
| |
| >>> df4.na.replace(10, 20).show() |
| +----+------+-----+ |
| | age|height| name| |
| +----+------+-----+ |
| | 20| 80|Alice| |
| | 5| null| Bob| |
| |null| null| Tom| |
| |null| null| null| |
| +----+------+-----+ |
| |
| >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() |
| +----+------+----+ |
| | age|height|name| |
| +----+------+----+ |
| | 10| 80| A| |
| | 5| null| B| |
| |null| null| Tom| |
| |null| null|null| |
| +----+------+----+ |
| """ |
| if not isinstance(to_replace, (float, int, long, basestring, list, tuple, dict)): |
| raise ValueError( |
| "to_replace should be a float, int, long, string, list, tuple, or dict") |
| |
| if not isinstance(value, (float, int, long, basestring, list, tuple)): |
| raise ValueError("value should be a float, int, long, string, list, or tuple") |
| |
| rep_dict = dict() |
| |
| if isinstance(to_replace, (float, int, long, basestring)): |
| to_replace = [to_replace] |
| |
| if isinstance(to_replace, tuple): |
| to_replace = list(to_replace) |
| |
| if isinstance(value, tuple): |
| value = list(value) |
| |
| if isinstance(to_replace, list) and isinstance(value, list): |
| if len(to_replace) != len(value): |
| raise ValueError("to_replace and value lists should be of the same length") |
| rep_dict = dict(zip(to_replace, value)) |
| elif isinstance(to_replace, list) and isinstance(value, (float, int, long, basestring)): |
| rep_dict = dict([(tr, value) for tr in to_replace]) |
| elif isinstance(to_replace, dict): |
| rep_dict = to_replace |
| |
| if subset is None: |
| return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) |
| elif isinstance(subset, basestring): |
| subset = [subset] |
| |
| if not isinstance(subset, (list, tuple)): |
| raise ValueError("subset should be a list or tuple of column names") |
| |
| return DataFrame( |
| self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) |
| |
| @since(1.4) |
| def corr(self, col1, col2, method=None): |
| """ |
| Calculates the correlation of two columns of a DataFrame as a double value. |
| Currently only supports the Pearson Correlation Coefficient. |
| :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. |
| |
| :param col1: The name of the first column |
| :param col2: The name of the second column |
| :param method: The correlation method. Currently only supports "pearson" |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| if not method: |
| method = "pearson" |
| if not method == "pearson": |
| raise ValueError("Currently only the calculation of the Pearson Correlation " + |
| "coefficient is supported.") |
| return self._jdf.stat().corr(col1, col2, method) |
| |
| @since(1.4) |
| def cov(self, col1, col2): |
| """ |
| Calculate the sample covariance for the given columns, specified by their names, as a |
| double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. |
| |
| :param col1: The name of the first column |
| :param col2: The name of the second column |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| return self._jdf.stat().cov(col1, col2) |
| |
| @since(1.4) |
| def crosstab(self, col1, col2): |
| """ |
| Computes a pair-wise frequency table of the given columns. Also known as a contingency |
| table. The number of distinct values for each column should be less than 1e4. At most 1e6 |
| non-zero pair frequencies will be returned. |
| The first column of each row will be the distinct values of `col1` and the column names |
| will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. |
| Pairs that have no occurrences will have zero as their counts. |
| :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. |
| |
| :param col1: The name of the first column. Distinct items will make the first item of |
| each row. |
| :param col2: The name of the second column. Distinct items will make the column names |
| of the DataFrame. |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) |
| |
| @since(1.4) |
| def freqItems(self, cols, support=None): |
| """ |
| Finding frequent items for columns, possibly with false positives. Using the |
| frequent element count algorithm described in |
| "http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". |
| :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. |
| |
| .. note:: This function is meant for exploratory data analysis, as we make no \ |
| guarantee about the backward compatibility of the schema of the resulting DataFrame. |
| |
| :param cols: Names of the columns to calculate frequent items for as a list or tuple of |
| strings. |
| :param support: The frequency with which to consider an item 'frequent'. Default is 1%. |
| The support must be greater than 1e-4. |
| """ |
| if isinstance(cols, tuple): |
| cols = list(cols) |
| if not isinstance(cols, list): |
| raise ValueError("cols must be a list or tuple of column names as strings.") |
| if not support: |
| support = 0.01 |
| return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def withColumn(self, colName, col): |
| """ |
| Returns a new :class:`DataFrame` by adding a column or replacing the |
| existing column that has the same name. |
| |
| :param colName: string, name of the new column. |
| :param col: a :class:`Column` expression for the new column. |
| |
| >>> df.withColumn('age2', df.age + 2).collect() |
| [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] |
| """ |
| assert isinstance(col, Column), "col should be Column" |
| return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def withColumnRenamed(self, existing, new): |
| """Returns a new :class:`DataFrame` by renaming an existing column. |
| |
| :param existing: string, name of the existing column to rename. |
| :param col: string, new name of the column. |
| |
| >>> df.withColumnRenamed('age', 'age2').collect() |
| [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')] |
| """ |
| return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) |
| |
| @since(1.4) |
| @ignore_unicode_prefix |
| def drop(self, col): |
| """Returns a new :class:`DataFrame` that drops the specified column. |
| |
| :param col: a string name of the column to drop, or a |
| :class:`Column` to drop. |
| |
| >>> df.drop('age').collect() |
| [Row(name=u'Alice'), Row(name=u'Bob')] |
| |
| >>> df.drop(df.age).collect() |
| [Row(name=u'Alice'), Row(name=u'Bob')] |
| |
| >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() |
| [Row(age=5, height=85, name=u'Bob')] |
| |
| >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() |
| [Row(age=5, name=u'Bob', height=85)] |
| """ |
| if isinstance(col, basestring): |
| jdf = self._jdf.drop(col) |
| elif isinstance(col, Column): |
| jdf = self._jdf.drop(col._jc) |
| else: |
| raise TypeError("col should be a string or a Column") |
| return DataFrame(jdf, self.sql_ctx) |
| |
| @since(1.3) |
| def toPandas(self): |
| """Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. |
| |
| This is only available if Pandas is installed and available. |
| |
| >>> df.toPandas() # doctest: +SKIP |
| age name |
| 0 2 Alice |
| 1 5 Bob |
| """ |
| import pandas as pd |
| return pd.DataFrame.from_records(self.collect(), columns=self.columns) |
| |
| ########################################################################################## |
| # Pandas compatibility |
| ########################################################################################## |
| |
| groupby = groupBy |
| drop_duplicates = dropDuplicates |
| |
| |
| # Having SchemaRDD for backward compatibility (for docs) |
| class SchemaRDD(DataFrame): |
| """SchemaRDD is deprecated, please use :class:`DataFrame`. |
| """ |
| |
| |
| def _to_scala_map(sc, jm): |
| """ |
| Convert a dict into a JVM Map. |
| """ |
| return sc._jvm.PythonUtils.toScalaMap(jm) |
| |
| |
| class DataFrameNaFunctions(object): |
| """Functionality for working with missing data in :class:`DataFrame`. |
| |
| .. versionadded:: 1.4 |
| """ |
| |
| def __init__(self, df): |
| self.df = df |
| |
| def drop(self, how='any', thresh=None, subset=None): |
| return self.df.dropna(how=how, thresh=thresh, subset=subset) |
| |
| drop.__doc__ = DataFrame.dropna.__doc__ |
| |
| def fill(self, value, subset=None): |
| return self.df.fillna(value=value, subset=subset) |
| |
| fill.__doc__ = DataFrame.fillna.__doc__ |
| |
| def replace(self, to_replace, value, subset=None): |
| return self.df.replace(to_replace, value, subset) |
| |
| replace.__doc__ = DataFrame.replace.__doc__ |
| |
| |
| class DataFrameStatFunctions(object): |
| """Functionality for statistic functions with :class:`DataFrame`. |
| |
| .. versionadded:: 1.4 |
| """ |
| |
| def __init__(self, df): |
| self.df = df |
| |
| def corr(self, col1, col2, method=None): |
| return self.df.corr(col1, col2, method) |
| |
| corr.__doc__ = DataFrame.corr.__doc__ |
| |
| def cov(self, col1, col2): |
| return self.df.cov(col1, col2) |
| |
| cov.__doc__ = DataFrame.cov.__doc__ |
| |
| def crosstab(self, col1, col2): |
| return self.df.crosstab(col1, col2) |
| |
| crosstab.__doc__ = DataFrame.crosstab.__doc__ |
| |
| def freqItems(self, cols, support=None): |
| return self.df.freqItems(cols, support) |
| |
| freqItems.__doc__ = DataFrame.freqItems.__doc__ |
| |
| def sampleBy(self, col, fractions, seed=None): |
| return self.df.sampleBy(col, fractions, seed) |
| |
| sampleBy.__doc__ = DataFrame.sampleBy.__doc__ |
| |
| |
| def _test(): |
| import doctest |
| from pyspark.context import SparkContext |
| from pyspark.sql import Row, SQLContext |
| import pyspark.sql.dataframe |
| globs = pyspark.sql.dataframe.__dict__.copy() |
| sc = SparkContext('local[4]', 'PythonTest') |
| globs['sc'] = sc |
| globs['sqlContext'] = SQLContext(sc) |
| globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ |
| .toDF(StructType([StructField('age', IntegerType()), |
| StructField('name', StringType())])) |
| globs['df2'] = sc.parallelize([Row(name='Tom', height=80), Row(name='Bob', height=85)]).toDF() |
| globs['df3'] = sc.parallelize([Row(name='Alice', age=2), |
| Row(name='Bob', age=5)]).toDF() |
| globs['df4'] = sc.parallelize([Row(name='Alice', age=10, height=80), |
| Row(name='Bob', age=5, height=None), |
| Row(name='Tom', age=None, height=None), |
| Row(name=None, age=None, height=None)]).toDF() |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.dataframe, globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) |
| globs['sc'].stop() |
| if failure_count: |
| exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |