| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """ |
| An example of how to use DataFrame as a dataset for ML. Run with:: |
| bin/spark-submit examples/src/main/python/mllib/dataset_example.py |
| """ |
| from __future__ import print_function |
| |
| import os |
| import sys |
| import tempfile |
| import shutil |
| |
| from pyspark import SparkContext |
| from pyspark.sql import SQLContext |
| from pyspark.mllib.util import MLUtils |
| from pyspark.mllib.stat import Statistics |
| |
| |
| def summarize(dataset): |
| print("schema: %s" % dataset.schema().json()) |
| labels = dataset.map(lambda r: r.label) |
| print("label average: %f" % labels.mean()) |
| features = dataset.map(lambda r: r.features) |
| summary = Statistics.colStats(features) |
| print("features average: %r" % summary.mean()) |
| |
| if __name__ == "__main__": |
| if len(sys.argv) > 2: |
| print("Usage: dataset_example.py <libsvm file>", file=sys.stderr) |
| exit(-1) |
| sc = SparkContext(appName="DatasetExample") |
| sqlContext = SQLContext(sc) |
| if len(sys.argv) == 2: |
| input = sys.argv[1] |
| else: |
| input = "data/mllib/sample_libsvm_data.txt" |
| points = MLUtils.loadLibSVMFile(sc, input) |
| dataset0 = sqlContext.inferSchema(points).setName("dataset0").cache() |
| summarize(dataset0) |
| tempdir = tempfile.NamedTemporaryFile(delete=False).name |
| os.unlink(tempdir) |
| print("Save dataset as a Parquet file to %s." % tempdir) |
| dataset0.saveAsParquetFile(tempdir) |
| print("Load it back and summarize it again.") |
| dataset1 = sqlContext.parquetFile(tempdir).setName("dataset1").cache() |
| summarize(dataset1) |
| shutil.rmtree(tempdir) |