| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| import com.typesafe.tools.mima.core._ |
| import com.typesafe.tools.mima.core.ProblemFilters._ |
| |
| /** |
| * Additional excludes for checking of Spark's binary compatibility. |
| * |
| * The Mima build will automatically exclude @DeveloperApi and @Experimental classes. This acts |
| * as an official audit of cases where we excluded other classes. Please use the narrowest |
| * possible exclude here. MIMA will usually tell you what exclude to use, e.g.: |
| * |
| * ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.rdd.RDD.take") |
| * |
| * It is also possible to exclude Spark classes and packages. This should be used sparingly: |
| * |
| * MimaBuild.excludeSparkClass("graphx.util.collection.GraphXPrimitiveKeyOpenHashMap") |
| */ |
| object MimaExcludes { |
| def excludes(version: String) = |
| version match { |
| case v if v.startsWith("1.4") => |
| Seq( |
| MimaBuild.excludeSparkPackage("deploy"), |
| MimaBuild.excludeSparkPackage("ml"), |
| // SPARK-5922 Adding a generalized diff(other: RDD[(VertexId, VD)]) to VertexRDD |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.diff"), |
| // These are needed if checking against the sbt build, since they are part of |
| // the maven-generated artifacts in 1.3. |
| excludePackage("org.spark-project.jetty"), |
| MimaBuild.excludeSparkPackage("unused"), |
| ProblemFilters.exclude[MissingClassProblem]("com.google.common.base.Optional"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.rdd.JdbcRDD.compute"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.broadcast.HttpBroadcastFactory.newBroadcast"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.scheduler.OutputCommitCoordinator$OutputCommitCoordinatorActor") |
| ) ++ Seq( |
| // SPARK-4655 - Making Stage an Abstract class broke binary compatility even though |
| // the stage class is defined as private[spark] |
| ProblemFilters.exclude[AbstractClassProblem]("org.apache.spark.scheduler.Stage") |
| ) ++ Seq( |
| // SPARK-6510 Add a Graph#minus method acting as Set#difference |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.minus") |
| ) ++ Seq( |
| // SPARK-6492 Fix deadlock in SparkContext.stop() |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.SparkContext.org$" + |
| "apache$spark$SparkContext$$SPARK_CONTEXT_CONSTRUCTOR_LOCK") |
| )++ Seq( |
| // SPARK-6693 add tostring with max lines and width for matrix |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrix.toString") |
| )++ Seq( |
| // SPARK-6703 Add getOrCreate method to SparkContext |
| ProblemFilters.exclude[IncompatibleResultTypeProblem] |
| ("org.apache.spark.SparkContext.org$apache$spark$SparkContext$$activeContext") |
| )++ Seq( |
| // SPARK-7090 Introduce LDAOptimizer to LDA to further improve extensibility |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.mllib.clustering.LDA$EMOptimizer") |
| ) ++ Seq( |
| // SPARK-6756 add toSparse, toDense, numActives, numNonzeros, and compressed to Vector |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Vector.compressed"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Vector.toDense"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Vector.numNonzeros"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Vector.toSparse"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Vector.numActives"), |
| // SPARK-7681 add SparseVector support for gemv |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrix.multiply"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.DenseMatrix.multiply"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.SparseMatrix.multiply") |
| ) ++ Seq( |
| // Execution should never be included as its always internal. |
| MimaBuild.excludeSparkPackage("sql.execution"), |
| // This `protected[sql]` method was removed in 1.3.1 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.sql.SQLContext.checkAnalysis"), |
| // These `private[sql]` class were removed in 1.4.0: |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.execution.AddExchange"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.execution.AddExchange$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.PartitionSpec"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.PartitionSpec$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.Partition"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.Partition$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetRelation2$PartitionValues"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetRelation2$PartitionValues$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetRelation2"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetRelation2$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache"), |
| // These test support classes were moved out of src/main and into src/test: |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetTestData"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetTestData$"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.TestGroupWriteSupport"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CachedData"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CachedData$"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CacheManager"), |
| // TODO: Remove the following rule once ParquetTest has been moved to src/test. |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.sql.parquet.ParquetTest") |
| ) ++ Seq( |
| // SPARK-7530 Added StreamingContext.getState() |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.StreamingContext.state_=") |
| ) ++ Seq( |
| // SPARK-7081 changed ShuffleWriter from a trait to an abstract class and removed some |
| // unnecessary type bounds in order to fix some compiler warnings that occurred when |
| // implementing this interface in Java. Note that ShuffleWriter is private[spark]. |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.shuffle.ShuffleWriter") |
| ) ++ Seq( |
| // SPARK-6888 make jdbc driver handling user definable |
| // This patch renames some classes to API friendly names. |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.DriverQuirks$"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.DriverQuirks"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.PostgresQuirks"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.NoQuirks"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.MySQLQuirks") |
| ) |
| |
| case v if v.startsWith("1.3") => |
| Seq( |
| MimaBuild.excludeSparkPackage("deploy"), |
| MimaBuild.excludeSparkPackage("ml"), |
| // These are needed if checking against the sbt build, since they are part of |
| // the maven-generated artifacts in the 1.2 build. |
| MimaBuild.excludeSparkPackage("unused"), |
| ProblemFilters.exclude[MissingClassProblem]("com.google.common.base.Optional") |
| ) ++ Seq( |
| // SPARK-2321 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.SparkStageInfoImpl.this"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.SparkStageInfo.submissionTime") |
| ) ++ Seq( |
| // SPARK-4614 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrices.randn"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrices.rand") |
| ) ++ Seq( |
| // SPARK-5321 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.SparseMatrix.transposeMultiply"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrix.transpose"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.DenseMatrix.transposeMultiply"), |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.linalg.Matrix." + |
| "org$apache$spark$mllib$linalg$Matrix$_setter_$isTransposed_="), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrix.isTransposed"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.linalg.Matrix.foreachActive") |
| ) ++ Seq( |
| // SPARK-5540 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.solveLeastSquares"), |
| // SPARK-5536 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateBlock") |
| ) ++ Seq( |
| // SPARK-3325 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.api.java.JavaDStreamLike.print"), |
| // SPARK-2757 |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.streaming.flume.sink.SparkAvroCallbackHandler." + |
| "removeAndGetProcessor") |
| ) ++ Seq( |
| // SPARK-5123 (SparkSQL data type change) - alpha component only |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.ml.feature.HashingTF.outputDataType"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.ml.feature.Tokenizer.outputDataType"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.ml.feature.Tokenizer.validateInputType"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.ml.classification.LogisticRegressionModel.validateAndTransformSchema"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.ml.classification.LogisticRegression.validateAndTransformSchema") |
| ) ++ Seq( |
| // SPARK-4014 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.TaskContext.taskAttemptId"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.TaskContext.attemptNumber") |
| ) ++ Seq( |
| // SPARK-5166 Spark SQL API stabilization |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Transformer.transform"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Estimator.fit"), |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Transformer.transform"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Pipeline.fit"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.PipelineModel.transform"), |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Estimator.fit"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Evaluator.evaluate"), |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Evaluator.evaluate"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.tuning.CrossValidator.fit"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.tuning.CrossValidatorModel.transform"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.feature.StandardScaler.fit"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.feature.StandardScalerModel.transform"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.classification.LogisticRegressionModel.transform"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.classification.LogisticRegression.fit"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.evaluation.BinaryClassificationEvaluator.evaluate") |
| ) ++ Seq( |
| // SPARK-5270 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.isEmpty") |
| ) ++ Seq( |
| // SPARK-5430 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.treeReduce"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.treeAggregate") |
| ) ++ Seq( |
| // SPARK-5297 Java FileStream do not work with custom key/values |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.api.java.JavaStreamingContext.fileStream") |
| ) ++ Seq( |
| // SPARK-5315 Spark Streaming Java API returns Scala DStream |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.api.java.JavaDStreamLike.reduceByWindow") |
| ) ++ Seq( |
| // SPARK-5461 Graph should have isCheckpointed, getCheckpointFiles methods |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.graphx.Graph.getCheckpointFiles"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.graphx.Graph.isCheckpointed") |
| ) ++ Seq( |
| // SPARK-4789 Standardize ML Prediction APIs |
| ProblemFilters.exclude[MissingTypesProblem]("org.apache.spark.mllib.linalg.VectorUDT"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.mllib.linalg.VectorUDT.serialize"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.mllib.linalg.VectorUDT.sqlType") |
| ) ++ Seq( |
| // SPARK-5814 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$wrapDoubleArray"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$fillFullMatrix"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$iterations"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeOutLinkBlock"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$computeYtY"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeLinkRDDs"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$alpha"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$randomFactor"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeInLinkBlock"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$dspr"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$lambda"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$implicitPrefs"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$rank") |
| ) ++ Seq( |
| // SPARK-4682 |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.RealClock"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.Clock"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.TestClock") |
| ) ++ Seq( |
| // SPARK-5922 Adding a generalized diff(other: RDD[(VertexId, VD)]) to VertexRDD |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.diff") |
| ) |
| |
| case v if v.startsWith("1.2") => |
| Seq( |
| MimaBuild.excludeSparkPackage("deploy"), |
| MimaBuild.excludeSparkPackage("graphx") |
| ) ++ |
| MimaBuild.excludeSparkClass("mllib.linalg.Matrix") ++ |
| MimaBuild.excludeSparkClass("mllib.linalg.Vector") ++ |
| Seq( |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.scheduler.TaskLocation"), |
| // Added normL1 and normL2 to trait MultivariateStatisticalSummary |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.stat.MultivariateStatisticalSummary.normL1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.stat.MultivariateStatisticalSummary.normL2"), |
| // MapStatus should be private[spark] |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.scheduler.MapStatus"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.network.netty.PathResolver"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.spark.network.netty.client.BlockClientListener"), |
| |
| // TaskContext was promoted to Abstract class |
| ProblemFilters.exclude[AbstractClassProblem]( |
| "org.apache.spark.TaskContext"), |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.util.collection.SortDataFormat") |
| ) ++ Seq( |
| // Adding new methods to the JavaRDDLike trait: |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.takeAsync"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.foreachPartitionAsync"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.countAsync"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.foreachAsync"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.collectAsync") |
| ) ++ Seq( |
| // SPARK-3822 |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.SparkContext.org$apache$spark$SparkContext$$createTaskScheduler") |
| ) ++ Seq( |
| // SPARK-1209 |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.hadoop.mapreduce.SparkHadoopMapReduceUtil"), |
| ProblemFilters.exclude[MissingClassProblem]( |
| "org.apache.hadoop.mapred.SparkHadoopMapRedUtil"), |
| ProblemFilters.exclude[MissingTypesProblem]( |
| "org.apache.spark.rdd.PairRDDFunctions") |
| ) ++ Seq( |
| // SPARK-4062 |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.kafka.KafkaReceiver#MessageHandler.this") |
| ) |
| |
| case v if v.startsWith("1.1") => |
| Seq( |
| MimaBuild.excludeSparkPackage("deploy"), |
| MimaBuild.excludeSparkPackage("graphx") |
| ) ++ |
| Seq( |
| // Adding new method to JavaRDLike trait - we should probably mark this as a developer API. |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.api.java.JavaRDDLike.partitions"), |
| // Should probably mark this as Experimental |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.foreachAsync"), |
| // We made a mistake earlier (ed06500d3) in the Java API to use default parameter values |
| // for countApproxDistinct* functions, which does not work in Java. We later removed |
| // them, and use the following to tell Mima to not care about them. |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey"), |
| ProblemFilters.exclude[IncompatibleResultTypeProblem]( |
| "org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaPairRDD.countApproxDistinct$default$1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey$default$1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDD.countApproxDistinct$default$1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaRDDLike.countApproxDistinct$default$1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.api.java.JavaDoubleRDD.countApproxDistinct$default$1"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.storage.DiskStore.getValues"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.storage.MemoryStore.Entry") |
| ) ++ |
| Seq( |
| // Serializer interface change. See SPARK-3045. |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.serializer.DeserializationStream"), |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.serializer.Serializer"), |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.serializer.SerializationStream"), |
| ProblemFilters.exclude[IncompatibleTemplateDefProblem]( |
| "org.apache.spark.serializer.SerializerInstance") |
| )++ |
| Seq( |
| // Renamed putValues -> putArray + putIterator |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.storage.MemoryStore.putValues"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.storage.DiskStore.putValues"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.storage.TachyonStore.putValues") |
| ) ++ |
| Seq( |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.streaming.flume.FlumeReceiver.this"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.streaming.kafka.KafkaUtils.createStream"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.streaming.kafka.KafkaReceiver.this") |
| ) ++ |
| Seq( // Ignore some private methods in ALS. |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures"), |
| ProblemFilters.exclude[MissingMethodProblem]( // The only public constructor is the one without arguments. |
| "org.apache.spark.mllib.recommendation.ALS.this"), |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$<init>$default$7"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures") |
| ) ++ |
| MimaBuild.excludeSparkClass("mllib.linalg.distributed.ColumnStatisticsAggregator") ++ |
| MimaBuild.excludeSparkClass("rdd.ZippedRDD") ++ |
| MimaBuild.excludeSparkClass("rdd.ZippedPartition") ++ |
| MimaBuild.excludeSparkClass("util.SerializableHyperLogLog") ++ |
| MimaBuild.excludeSparkClass("storage.Values") ++ |
| MimaBuild.excludeSparkClass("storage.Entry") ++ |
| MimaBuild.excludeSparkClass("storage.MemoryStore$Entry") ++ |
| // Class was missing "@DeveloperApi" annotation in 1.0. |
| MimaBuild.excludeSparkClass("scheduler.SparkListenerApplicationStart") ++ |
| Seq( |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.mllib.tree.impurity.Gini.calculate"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.mllib.tree.impurity.Entropy.calculate"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]( |
| "org.apache.spark.mllib.tree.impurity.Variance.calculate") |
| ) ++ |
| Seq( // Package-private classes removed in SPARK-2341 |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.BinaryLabelParser"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.BinaryLabelParser$"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.LabelParser"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.LabelParser$"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.MulticlassLabelParser"), |
| ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.MulticlassLabelParser$") |
| ) ++ |
| Seq( // package-private classes removed in MLlib |
| ProblemFilters.exclude[MissingMethodProblem]( |
| "org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm.org$apache$spark$mllib$regression$GeneralizedLinearAlgorithm$$prependOne") |
| ) ++ |
| Seq( // new Vector methods in MLlib (binary compatible assuming users do not implement Vector) |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.linalg.Vector.copy") |
| ) ++ |
| Seq( // synthetic methods generated in LabeledPoint |
| ProblemFilters.exclude[MissingTypesProblem]("org.apache.spark.mllib.regression.LabeledPoint$"), |
| ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.mllib.regression.LabeledPoint.apply"), |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.regression.LabeledPoint.toString") |
| ) ++ |
| Seq ( // Scala 2.11 compatibility fix |
| ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.streaming.StreamingContext.<init>$default$2") |
| ) |
| case v if v.startsWith("1.0") => |
| Seq( |
| MimaBuild.excludeSparkPackage("api.java"), |
| MimaBuild.excludeSparkPackage("mllib"), |
| MimaBuild.excludeSparkPackage("streaming") |
| ) ++ |
| MimaBuild.excludeSparkClass("rdd.ClassTags") ++ |
| MimaBuild.excludeSparkClass("util.XORShiftRandom") ++ |
| MimaBuild.excludeSparkClass("graphx.EdgeRDD") ++ |
| MimaBuild.excludeSparkClass("graphx.VertexRDD") ++ |
| MimaBuild.excludeSparkClass("graphx.impl.GraphImpl") ++ |
| MimaBuild.excludeSparkClass("graphx.impl.RoutingTable") ++ |
| MimaBuild.excludeSparkClass("graphx.util.collection.PrimitiveKeyOpenHashMap") ++ |
| MimaBuild.excludeSparkClass("graphx.util.collection.GraphXPrimitiveKeyOpenHashMap") ++ |
| MimaBuild.excludeSparkClass("mllib.recommendation.MFDataGenerator") ++ |
| MimaBuild.excludeSparkClass("mllib.optimization.SquaredGradient") ++ |
| MimaBuild.excludeSparkClass("mllib.regression.RidgeRegressionWithSGD") ++ |
| MimaBuild.excludeSparkClass("mllib.regression.LassoWithSGD") ++ |
| MimaBuild.excludeSparkClass("mllib.regression.LinearRegressionWithSGD") |
| case _ => Seq() |
| } |
| } |