blob: 2d29f74a19c1a4677c152982e9f938f429716714 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark import SparkContext
if __name__ == "__main__":
sc = SparkContext(appName="StratifiedSamplingExample") # SparkContext
# $example on$
# an RDD of any key value pairs
data = sc.parallelize([(1, 'a'), (1, 'b'), (2, 'c'), (2, 'd'), (2, 'e'), (3, 'f')])
# specify the exact fraction desired from each key as a dictionary
fractions = {1: 0.1, 2: 0.6, 3: 0.3}
approxSample = data.sampleByKey(False, fractions)
# $example off$
for each in approxSample.collect():
print(each)
sc.stop()