blob: 47223fd953d1753c632b984fc4dc70d04a2cec58 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
An example demonstrating k-means clustering.
Run with:
bin/spark-submit examples/src/main/python/ml/kmeans_example.py
This example requires NumPy (http://www.numpy.org/).
"""
# $example on$
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
# $example off$
from pyspark.sql import SparkSession
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("KMeansExample")\
.getOrCreate()
# $example on$
# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt")
# Trains a k-means model.
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(dataset)
# Make predictions
predictions = model.transform(dataset)
# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictions)
print("Silhouette with squared euclidean distance = " + str(silhouette))
# Shows the result.
centers = model.clusterCenters()
print("Cluster Centers: ")
for center in centers:
print(center)
# $example off$
spark.stop()