| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """ |
| FMClassifier Example. |
| """ |
| # $example on$ |
| from pyspark.ml import Pipeline |
| from pyspark.ml.classification import FMClassifier |
| from pyspark.ml.feature import MinMaxScaler, StringIndexer |
| from pyspark.ml.evaluation import MulticlassClassificationEvaluator |
| # $example off$ |
| from pyspark.sql import SparkSession |
| |
| if __name__ == "__main__": |
| spark = SparkSession \ |
| .builder \ |
| .appName("FMClassifierExample") \ |
| .getOrCreate() |
| |
| # $example on$ |
| # Load and parse the data file, converting it to a DataFrame. |
| data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") |
| |
| # Index labels, adding metadata to the label column. |
| # Fit on whole dataset to include all labels in index. |
| labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data) |
| # Scale features. |
| featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures").fit(data) |
| |
| # Split the data into training and test sets (30% held out for testing) |
| (trainingData, testData) = data.randomSplit([0.7, 0.3]) |
| |
| # Train a FM model. |
| fm = FMClassifier(labelCol="indexedLabel", featuresCol="scaledFeatures", stepSize=0.001) |
| |
| # Create a Pipeline. |
| pipeline = Pipeline(stages=[labelIndexer, featureScaler, fm]) |
| |
| # Train model. |
| model = pipeline.fit(trainingData) |
| |
| # Make predictions. |
| predictions = model.transform(testData) |
| |
| # Select example rows to display. |
| predictions.select("prediction", "indexedLabel", "features").show(5) |
| |
| # Select (prediction, true label) and compute test accuracy |
| evaluator = MulticlassClassificationEvaluator( |
| labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy") |
| accuracy = evaluator.evaluate(predictions) |
| print("Test set accuracy = %g" % accuracy) |
| |
| fmModel = model.stages[2] |
| print("Factors: " + str(fmModel.factors)) # type: ignore |
| print("Linear: " + str(fmModel.linear)) # type: ignore |
| print("Intercept: " + str(fmModel.intercept)) # type: ignore |
| # $example off$ |
| |
| spark.stop() |