| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import warnings |
| import json |
| |
| if sys.version >= '3': |
| basestring = str |
| long = int |
| |
| from pyspark import copy_func, since |
| from pyspark.context import SparkContext |
| from pyspark.rdd import ignore_unicode_prefix |
| from pyspark.sql.types import * |
| |
| __all__ = ["Column"] |
| |
| |
| def _create_column_from_literal(literal): |
| sc = SparkContext._active_spark_context |
| return sc._jvm.functions.lit(literal) |
| |
| |
| def _create_column_from_name(name): |
| sc = SparkContext._active_spark_context |
| return sc._jvm.functions.col(name) |
| |
| |
| def _to_java_column(col): |
| if isinstance(col, Column): |
| jcol = col._jc |
| else: |
| jcol = _create_column_from_name(col) |
| return jcol |
| |
| |
| def _to_seq(sc, cols, converter=None): |
| """ |
| Convert a list of Column (or names) into a JVM Seq of Column. |
| |
| An optional `converter` could be used to convert items in `cols` |
| into JVM Column objects. |
| """ |
| if converter: |
| cols = [converter(c) for c in cols] |
| return sc._jvm.PythonUtils.toSeq(cols) |
| |
| |
| def _to_list(sc, cols, converter=None): |
| """ |
| Convert a list of Column (or names) into a JVM (Scala) List of Column. |
| |
| An optional `converter` could be used to convert items in `cols` |
| into JVM Column objects. |
| """ |
| if converter: |
| cols = [converter(c) for c in cols] |
| return sc._jvm.PythonUtils.toList(cols) |
| |
| |
| def _unary_op(name, doc="unary operator"): |
| """ Create a method for given unary operator """ |
| def _(self): |
| jc = getattr(self._jc, name)() |
| return Column(jc) |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _func_op(name, doc=''): |
| def _(self): |
| sc = SparkContext._active_spark_context |
| jc = getattr(sc._jvm.functions, name)(self._jc) |
| return Column(jc) |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _bin_func_op(name, reverse=False, doc="binary function"): |
| def _(self, other): |
| sc = SparkContext._active_spark_context |
| fn = getattr(sc._jvm.functions, name) |
| jc = other._jc if isinstance(other, Column) else _create_column_from_literal(other) |
| njc = fn(self._jc, jc) if not reverse else fn(jc, self._jc) |
| return Column(njc) |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _bin_op(name, doc="binary operator"): |
| """ Create a method for given binary operator |
| """ |
| def _(self, other): |
| jc = other._jc if isinstance(other, Column) else other |
| njc = getattr(self._jc, name)(jc) |
| return Column(njc) |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _reverse_op(name, doc="binary operator"): |
| """ Create a method for binary operator (this object is on right side) |
| """ |
| def _(self, other): |
| jother = _create_column_from_literal(other) |
| jc = getattr(jother, name)(self._jc) |
| return Column(jc) |
| _.__doc__ = doc |
| return _ |
| |
| |
| class Column(object): |
| |
| """ |
| A column in a DataFrame. |
| |
| :class:`Column` instances can be created by:: |
| |
| # 1. Select a column out of a DataFrame |
| |
| df.colName |
| df["colName"] |
| |
| # 2. Create from an expression |
| df.colName + 1 |
| 1 / df.colName |
| |
| .. versionadded:: 1.3 |
| """ |
| |
| def __init__(self, jc): |
| self._jc = jc |
| |
| # arithmetic operators |
| __neg__ = _func_op("negate") |
| __add__ = _bin_op("plus") |
| __sub__ = _bin_op("minus") |
| __mul__ = _bin_op("multiply") |
| __div__ = _bin_op("divide") |
| __truediv__ = _bin_op("divide") |
| __mod__ = _bin_op("mod") |
| __radd__ = _bin_op("plus") |
| __rsub__ = _reverse_op("minus") |
| __rmul__ = _bin_op("multiply") |
| __rdiv__ = _reverse_op("divide") |
| __rtruediv__ = _reverse_op("divide") |
| __rmod__ = _reverse_op("mod") |
| __pow__ = _bin_func_op("pow") |
| __rpow__ = _bin_func_op("pow", reverse=True) |
| |
| # logistic operators |
| __eq__ = _bin_op("equalTo") |
| __ne__ = _bin_op("notEqual") |
| __lt__ = _bin_op("lt") |
| __le__ = _bin_op("leq") |
| __ge__ = _bin_op("geq") |
| __gt__ = _bin_op("gt") |
| |
| # `and`, `or`, `not` cannot be overloaded in Python, |
| # so use bitwise operators as boolean operators |
| __and__ = _bin_op('and') |
| __or__ = _bin_op('or') |
| __invert__ = _func_op('not') |
| __rand__ = _bin_op("and") |
| __ror__ = _bin_op("or") |
| |
| # container operators |
| def __contains__(self, item): |
| raise ValueError("Cannot apply 'in' operator against a column: please use 'contains' " |
| "in a string column or 'array_contains' function for an array column.") |
| |
| # bitwise operators |
| bitwiseOR = _bin_op("bitwiseOR") |
| bitwiseAND = _bin_op("bitwiseAND") |
| bitwiseXOR = _bin_op("bitwiseXOR") |
| |
| @since(1.3) |
| def getItem(self, key): |
| """ |
| An expression that gets an item at position ``ordinal`` out of a list, |
| or gets an item by key out of a dict. |
| |
| >>> df = sc.parallelize([([1, 2], {"key": "value"})]).toDF(["l", "d"]) |
| >>> df.select(df.l.getItem(0), df.d.getItem("key")).show() |
| +----+------+ |
| |l[0]|d[key]| |
| +----+------+ |
| | 1| value| |
| +----+------+ |
| >>> df.select(df.l[0], df.d["key"]).show() |
| +----+------+ |
| |l[0]|d[key]| |
| +----+------+ |
| | 1| value| |
| +----+------+ |
| """ |
| return self[key] |
| |
| @since(1.3) |
| def getField(self, name): |
| """ |
| An expression that gets a field by name in a StructField. |
| |
| >>> from pyspark.sql import Row |
| >>> df = sc.parallelize([Row(r=Row(a=1, b="b"))]).toDF() |
| >>> df.select(df.r.getField("b")).show() |
| +---+ |
| |r.b| |
| +---+ |
| | b| |
| +---+ |
| >>> df.select(df.r.a).show() |
| +---+ |
| |r.a| |
| +---+ |
| | 1| |
| +---+ |
| """ |
| return self[name] |
| |
| def __getattr__(self, item): |
| if item.startswith("__"): |
| raise AttributeError(item) |
| return self.getField(item) |
| |
| def __getitem__(self, k): |
| if isinstance(k, slice): |
| if k.step is not None: |
| raise ValueError("slice with step is not supported.") |
| return self.substr(k.start, k.stop) |
| else: |
| return _bin_op("apply")(self, k) |
| |
| def __iter__(self): |
| raise TypeError("Column is not iterable") |
| |
| # string methods |
| _rlike_doc = """ |
| Return a Boolean :class:`Column` based on a regex match. |
| |
| :param other: an extended regex expression |
| |
| >>> df.filter(df.name.rlike('ice$')).collect() |
| [Row(age=2, name=u'Alice')] |
| """ |
| _like_doc = """ |
| Return a Boolean :class:`Column` based on a SQL LIKE match. |
| |
| :param other: a SQL LIKE pattern |
| |
| See :func:`rlike` for a regex version |
| |
| >>> df.filter(df.name.like('Al%')).collect() |
| [Row(age=2, name=u'Alice')] |
| """ |
| _startswith_doc = """ |
| Return a Boolean :class:`Column` based on a string match. |
| |
| :param other: string at end of line (do not use a regex `^`) |
| |
| >>> df.filter(df.name.startswith('Al')).collect() |
| [Row(age=2, name=u'Alice')] |
| >>> df.filter(df.name.startswith('^Al')).collect() |
| [] |
| """ |
| _endswith_doc = """ |
| Return a Boolean :class:`Column` based on matching end of string. |
| |
| :param other: string at end of line (do not use a regex `$`) |
| |
| >>> df.filter(df.name.endswith('ice')).collect() |
| [Row(age=2, name=u'Alice')] |
| >>> df.filter(df.name.endswith('ice$')).collect() |
| [] |
| """ |
| |
| contains = _bin_op("contains") |
| rlike = ignore_unicode_prefix(_bin_op("rlike", _rlike_doc)) |
| like = ignore_unicode_prefix(_bin_op("like", _like_doc)) |
| startswith = ignore_unicode_prefix(_bin_op("startsWith", _startswith_doc)) |
| endswith = ignore_unicode_prefix(_bin_op("endsWith", _endswith_doc)) |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def substr(self, startPos, length): |
| """ |
| Return a :class:`Column` which is a substring of the column. |
| |
| :param startPos: start position (int or Column) |
| :param length: length of the substring (int or Column) |
| |
| >>> df.select(df.name.substr(1, 3).alias("col")).collect() |
| [Row(col=u'Ali'), Row(col=u'Bob')] |
| """ |
| if type(startPos) != type(length): |
| raise TypeError("Can not mix the type") |
| if isinstance(startPos, (int, long)): |
| jc = self._jc.substr(startPos, length) |
| elif isinstance(startPos, Column): |
| jc = self._jc.substr(startPos._jc, length._jc) |
| else: |
| raise TypeError("Unexpected type: %s" % type(startPos)) |
| return Column(jc) |
| |
| @ignore_unicode_prefix |
| @since(1.5) |
| def isin(self, *cols): |
| """ |
| A boolean expression that is evaluated to true if the value of this |
| expression is contained by the evaluated values of the arguments. |
| |
| >>> df[df.name.isin("Bob", "Mike")].collect() |
| [Row(age=5, name=u'Bob')] |
| >>> df[df.age.isin([1, 2, 3])].collect() |
| [Row(age=2, name=u'Alice')] |
| """ |
| if len(cols) == 1 and isinstance(cols[0], (list, set)): |
| cols = cols[0] |
| cols = [c._jc if isinstance(c, Column) else _create_column_from_literal(c) for c in cols] |
| sc = SparkContext._active_spark_context |
| jc = getattr(self._jc, "isin")(_to_seq(sc, cols)) |
| return Column(jc) |
| |
| # order |
| asc = _unary_op("asc", "Returns a sort expression based on the" |
| " ascending order of the given column name.") |
| desc = _unary_op("desc", "Returns a sort expression based on the" |
| " descending order of the given column name.") |
| |
| _isNull_doc = """ |
| True if the current expression is null. Often combined with |
| :func:`DataFrame.filter` to select rows with null values. |
| |
| >>> from pyspark.sql import Row |
| >>> df2 = sc.parallelize([Row(name=u'Tom', height=80), Row(name=u'Alice', height=None)]).toDF() |
| >>> df2.filter(df2.height.isNull()).collect() |
| [Row(height=None, name=u'Alice')] |
| """ |
| _isNotNull_doc = """ |
| True if the current expression is null. Often combined with |
| :func:`DataFrame.filter` to select rows with non-null values. |
| |
| >>> from pyspark.sql import Row |
| >>> df2 = sc.parallelize([Row(name=u'Tom', height=80), Row(name=u'Alice', height=None)]).toDF() |
| >>> df2.filter(df2.height.isNotNull()).collect() |
| [Row(height=80, name=u'Tom')] |
| """ |
| |
| isNull = ignore_unicode_prefix(_unary_op("isNull", _isNull_doc)) |
| isNotNull = ignore_unicode_prefix(_unary_op("isNotNull", _isNotNull_doc)) |
| |
| @since(1.3) |
| def alias(self, *alias, **kwargs): |
| """ |
| Returns this column aliased with a new name or names (in the case of expressions that |
| return more than one column, such as explode). |
| |
| :param alias: strings of desired column names (collects all positional arguments passed) |
| :param metadata: a dict of information to be stored in ``metadata`` attribute of the |
| corresponding :class: `StructField` (optional, keyword only argument) |
| |
| .. versionchanged:: 2.2 |
| Added optional ``metadata`` argument. |
| |
| >>> df.select(df.age.alias("age2")).collect() |
| [Row(age2=2), Row(age2=5)] |
| >>> df.select(df.age.alias("age3", metadata={'max': 99})).schema['age3'].metadata['max'] |
| 99 |
| """ |
| |
| metadata = kwargs.pop('metadata', None) |
| assert not kwargs, 'Unexpected kwargs where passed: %s' % kwargs |
| |
| sc = SparkContext._active_spark_context |
| if len(alias) == 1: |
| if metadata: |
| jmeta = sc._jvm.org.apache.spark.sql.types.Metadata.fromJson( |
| json.dumps(metadata)) |
| return Column(getattr(self._jc, "as")(alias[0], jmeta)) |
| else: |
| return Column(getattr(self._jc, "as")(alias[0])) |
| else: |
| if metadata: |
| raise ValueError('metadata can only be provided for a single column') |
| return Column(getattr(self._jc, "as")(_to_seq(sc, list(alias)))) |
| |
| name = copy_func(alias, sinceversion=2.0, doc=":func:`name` is an alias for :func:`alias`.") |
| |
| @ignore_unicode_prefix |
| @since(1.3) |
| def cast(self, dataType): |
| """ Convert the column into type ``dataType``. |
| |
| >>> df.select(df.age.cast("string").alias('ages')).collect() |
| [Row(ages=u'2'), Row(ages=u'5')] |
| >>> df.select(df.age.cast(StringType()).alias('ages')).collect() |
| [Row(ages=u'2'), Row(ages=u'5')] |
| """ |
| if isinstance(dataType, basestring): |
| jc = self._jc.cast(dataType) |
| elif isinstance(dataType, DataType): |
| from pyspark.sql import SparkSession |
| spark = SparkSession.builder.getOrCreate() |
| jdt = spark._jsparkSession.parseDataType(dataType.json()) |
| jc = self._jc.cast(jdt) |
| else: |
| raise TypeError("unexpected type: %s" % type(dataType)) |
| return Column(jc) |
| |
| astype = copy_func(cast, sinceversion=1.4, doc=":func:`astype` is an alias for :func:`cast`.") |
| |
| @since(1.3) |
| def between(self, lowerBound, upperBound): |
| """ |
| A boolean expression that is evaluated to true if the value of this |
| expression is between the given columns. |
| |
| >>> df.select(df.name, df.age.between(2, 4)).show() |
| +-----+---------------------------+ |
| | name|((age >= 2) AND (age <= 4))| |
| +-----+---------------------------+ |
| |Alice| true| |
| | Bob| false| |
| +-----+---------------------------+ |
| """ |
| return (self >= lowerBound) & (self <= upperBound) |
| |
| @since(1.4) |
| def when(self, condition, value): |
| """ |
| Evaluates a list of conditions and returns one of multiple possible result expressions. |
| If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. |
| |
| See :func:`pyspark.sql.functions.when` for example usage. |
| |
| :param condition: a boolean :class:`Column` expression. |
| :param value: a literal value, or a :class:`Column` expression. |
| |
| >>> from pyspark.sql import functions as F |
| >>> df.select(df.name, F.when(df.age > 4, 1).when(df.age < 3, -1).otherwise(0)).show() |
| +-----+------------------------------------------------------------+ |
| | name|CASE WHEN (age > 4) THEN 1 WHEN (age < 3) THEN -1 ELSE 0 END| |
| +-----+------------------------------------------------------------+ |
| |Alice| -1| |
| | Bob| 1| |
| +-----+------------------------------------------------------------+ |
| """ |
| if not isinstance(condition, Column): |
| raise TypeError("condition should be a Column") |
| v = value._jc if isinstance(value, Column) else value |
| jc = self._jc.when(condition._jc, v) |
| return Column(jc) |
| |
| @since(1.4) |
| def otherwise(self, value): |
| """ |
| Evaluates a list of conditions and returns one of multiple possible result expressions. |
| If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. |
| |
| See :func:`pyspark.sql.functions.when` for example usage. |
| |
| :param value: a literal value, or a :class:`Column` expression. |
| |
| >>> from pyspark.sql import functions as F |
| >>> df.select(df.name, F.when(df.age > 3, 1).otherwise(0)).show() |
| +-----+-------------------------------------+ |
| | name|CASE WHEN (age > 3) THEN 1 ELSE 0 END| |
| +-----+-------------------------------------+ |
| |Alice| 0| |
| | Bob| 1| |
| +-----+-------------------------------------+ |
| """ |
| v = value._jc if isinstance(value, Column) else value |
| jc = self._jc.otherwise(v) |
| return Column(jc) |
| |
| @since(1.4) |
| def over(self, window): |
| """ |
| Define a windowing column. |
| |
| :param window: a :class:`WindowSpec` |
| :return: a Column |
| |
| >>> from pyspark.sql import Window |
| >>> window = Window.partitionBy("name").orderBy("age").rowsBetween(-1, 1) |
| >>> from pyspark.sql.functions import rank, min |
| >>> # df.select(rank().over(window), min('age').over(window)) |
| """ |
| from pyspark.sql.window import WindowSpec |
| if not isinstance(window, WindowSpec): |
| raise TypeError("window should be WindowSpec") |
| jc = self._jc.over(window._jspec) |
| return Column(jc) |
| |
| def __nonzero__(self): |
| raise ValueError("Cannot convert column into bool: please use '&' for 'and', '|' for 'or', " |
| "'~' for 'not' when building DataFrame boolean expressions.") |
| __bool__ = __nonzero__ |
| |
| def __repr__(self): |
| return 'Column<%s>' % self._jc.toString().encode('utf8') |
| |
| |
| def _test(): |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.sql.column |
| globs = pyspark.sql.column.__dict__.copy() |
| spark = SparkSession.builder\ |
| .master("local[4]")\ |
| .appName("sql.column tests")\ |
| .getOrCreate() |
| sc = spark.sparkContext |
| globs['sc'] = sc |
| globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')]) \ |
| .toDF(StructType([StructField('age', IntegerType()), |
| StructField('name', StringType())])) |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.column, globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) |
| spark.stop() |
| if failure_count: |
| exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |