| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import array as pyarray |
| import warnings |
| |
| if sys.version > '3': |
| xrange = range |
| basestring = str |
| |
| from math import exp, log |
| |
| from numpy import array, random, tile |
| |
| from collections import namedtuple |
| |
| from pyspark import SparkContext, since |
| from pyspark.rdd import RDD, ignore_unicode_prefix |
| from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, callJavaFunc, _py2java, _java2py |
| from pyspark.mllib.linalg import SparseVector, _convert_to_vector, DenseVector |
| from pyspark.mllib.regression import LabeledPoint |
| from pyspark.mllib.stat.distribution import MultivariateGaussian |
| from pyspark.mllib.util import Saveable, Loader, inherit_doc, JavaLoader, JavaSaveable |
| from pyspark.streaming import DStream |
| |
| __all__ = ['BisectingKMeansModel', 'BisectingKMeans', 'KMeansModel', 'KMeans', |
| 'GaussianMixtureModel', 'GaussianMixture', 'PowerIterationClusteringModel', |
| 'PowerIterationClustering', 'StreamingKMeans', 'StreamingKMeansModel', |
| 'LDA', 'LDAModel'] |
| |
| |
| @inherit_doc |
| class BisectingKMeansModel(JavaModelWrapper): |
| """ |
| A clustering model derived from the bisecting k-means method. |
| |
| >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) |
| >>> bskm = BisectingKMeans() |
| >>> model = bskm.train(sc.parallelize(data, 2), k=4) |
| >>> p = array([0.0, 0.0]) |
| >>> model.predict(p) |
| 0 |
| >>> model.k |
| 4 |
| >>> model.computeCost(p) |
| 0.0 |
| |
| .. versionadded:: 2.0.0 |
| """ |
| |
| def __init__(self, java_model): |
| super(BisectingKMeansModel, self).__init__(java_model) |
| self.centers = [c.toArray() for c in self.call("clusterCenters")] |
| |
| @property |
| @since('2.0.0') |
| def clusterCenters(self): |
| """Get the cluster centers, represented as a list of NumPy |
| arrays.""" |
| return self.centers |
| |
| @property |
| @since('2.0.0') |
| def k(self): |
| """Get the number of clusters""" |
| return self.call("k") |
| |
| @since('2.0.0') |
| def predict(self, x): |
| """ |
| Find the cluster that each of the points belongs to in this |
| model. |
| |
| :param x: |
| A data point (or RDD of points) to determine cluster index. |
| :return: |
| Predicted cluster index or an RDD of predicted cluster indices |
| if the input is an RDD. |
| """ |
| if isinstance(x, RDD): |
| vecs = x.map(_convert_to_vector) |
| return self.call("predict", vecs) |
| |
| x = _convert_to_vector(x) |
| return self.call("predict", x) |
| |
| @since('2.0.0') |
| def computeCost(self, x): |
| """ |
| Return the Bisecting K-means cost (sum of squared distances of |
| points to their nearest center) for this model on the given |
| data. If provided with an RDD of points returns the sum. |
| |
| :param point: |
| A data point (or RDD of points) to compute the cost(s). |
| """ |
| if isinstance(x, RDD): |
| vecs = x.map(_convert_to_vector) |
| return self.call("computeCost", vecs) |
| |
| return self.call("computeCost", _convert_to_vector(x)) |
| |
| |
| class BisectingKMeans(object): |
| """ |
| A bisecting k-means algorithm based on the paper "A comparison of |
| document clustering techniques" by Steinbach, Karypis, and Kumar, |
| with modification to fit Spark. |
| The algorithm starts from a single cluster that contains all points. |
| Iteratively it finds divisible clusters on the bottom level and |
| bisects each of them using k-means, until there are `k` leaf |
| clusters in total or no leaf clusters are divisible. |
| The bisecting steps of clusters on the same level are grouped |
| together to increase parallelism. If bisecting all divisible |
| clusters on the bottom level would result more than `k` leaf |
| clusters, larger clusters get higher priority. |
| |
| Based on |
| U{http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf} |
| Steinbach, Karypis, and Kumar, A comparison of document clustering |
| techniques, KDD Workshop on Text Mining, 2000. |
| |
| .. versionadded:: 2.0.0 |
| """ |
| |
| @classmethod |
| @since('2.0.0') |
| def train(self, rdd, k=4, maxIterations=20, minDivisibleClusterSize=1.0, seed=-1888008604): |
| """ |
| Runs the bisecting k-means algorithm return the model. |
| |
| :param rdd: |
| Training points as an `RDD` of `Vector` or convertible |
| sequence types. |
| :param k: |
| The desired number of leaf clusters. The actual number could |
| be smaller if there are no divisible leaf clusters. |
| (default: 4) |
| :param maxIterations: |
| Maximum number of iterations allowed to split clusters. |
| (default: 20) |
| :param minDivisibleClusterSize: |
| Minimum number of points (if >= 1.0) or the minimum proportion |
| of points (if < 1.0) of a divisible cluster. |
| (default: 1) |
| :param seed: |
| Random seed value for cluster initialization. |
| (default: -1888008604 from classOf[BisectingKMeans].getName.##) |
| """ |
| java_model = callMLlibFunc( |
| "trainBisectingKMeans", rdd.map(_convert_to_vector), |
| k, maxIterations, minDivisibleClusterSize, seed) |
| return BisectingKMeansModel(java_model) |
| |
| |
| @inherit_doc |
| class KMeansModel(Saveable, Loader): |
| |
| """A clustering model derived from the k-means method. |
| |
| >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) |
| >>> model = KMeans.train( |
| ... sc.parallelize(data), 2, maxIterations=10, initializationMode="random", |
| ... seed=50, initializationSteps=5, epsilon=1e-4) |
| >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) |
| True |
| >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) |
| True |
| >>> model.k |
| 2 |
| >>> model.computeCost(sc.parallelize(data)) |
| 2.0000000000000004 |
| >>> model = KMeans.train(sc.parallelize(data), 2) |
| >>> sparse_data = [ |
| ... SparseVector(3, {1: 1.0}), |
| ... SparseVector(3, {1: 1.1}), |
| ... SparseVector(3, {2: 1.0}), |
| ... SparseVector(3, {2: 1.1}) |
| ... ] |
| >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||", |
| ... seed=50, initializationSteps=5, epsilon=1e-4) |
| >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) |
| True |
| >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) |
| True |
| >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) |
| True |
| >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) |
| True |
| >>> isinstance(model.clusterCenters, list) |
| True |
| >>> import os, tempfile |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = KMeansModel.load(sc, path) |
| >>> sameModel.predict(sparse_data[0]) == model.predict(sparse_data[0]) |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| >>> data = array([-383.1,-382.9, 28.7,31.2, 366.2,367.3]).reshape(3, 2) |
| >>> model = KMeans.train(sc.parallelize(data), 3, maxIterations=0, |
| ... initialModel = KMeansModel([(-1000.0,-1000.0),(5.0,5.0),(1000.0,1000.0)])) |
| >>> model.clusterCenters |
| [array([-1000., -1000.]), array([ 5., 5.]), array([ 1000., 1000.])] |
| |
| .. versionadded:: 0.9.0 |
| """ |
| |
| def __init__(self, centers): |
| self.centers = centers |
| |
| @property |
| @since('1.0.0') |
| def clusterCenters(self): |
| """Get the cluster centers, represented as a list of NumPy arrays.""" |
| return self.centers |
| |
| @property |
| @since('1.4.0') |
| def k(self): |
| """Total number of clusters.""" |
| return len(self.centers) |
| |
| @since('0.9.0') |
| def predict(self, x): |
| """ |
| Find the cluster that each of the points belongs to in this |
| model. |
| |
| :param x: |
| A data point (or RDD of points) to determine cluster index. |
| :return: |
| Predicted cluster index or an RDD of predicted cluster indices |
| if the input is an RDD. |
| """ |
| best = 0 |
| best_distance = float("inf") |
| if isinstance(x, RDD): |
| return x.map(self.predict) |
| |
| x = _convert_to_vector(x) |
| for i in xrange(len(self.centers)): |
| distance = x.squared_distance(self.centers[i]) |
| if distance < best_distance: |
| best = i |
| best_distance = distance |
| return best |
| |
| @since('1.4.0') |
| def computeCost(self, rdd): |
| """ |
| Return the K-means cost (sum of squared distances of points to |
| their nearest center) for this model on the given |
| data. |
| |
| :param rdd: |
| The RDD of points to compute the cost on. |
| """ |
| cost = callMLlibFunc("computeCostKmeansModel", rdd.map(_convert_to_vector), |
| [_convert_to_vector(c) for c in self.centers]) |
| return cost |
| |
| @since('1.4.0') |
| def save(self, sc, path): |
| """ |
| Save this model to the given path. |
| """ |
| java_centers = _py2java(sc, [_convert_to_vector(c) for c in self.centers]) |
| java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel(java_centers) |
| java_model.save(sc._jsc.sc(), path) |
| |
| @classmethod |
| @since('1.4.0') |
| def load(cls, sc, path): |
| """ |
| Load a model from the given path. |
| """ |
| java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel.load(sc._jsc.sc(), path) |
| return KMeansModel(_java2py(sc, java_model.clusterCenters())) |
| |
| |
| class KMeans(object): |
| """ |
| .. versionadded:: 0.9.0 |
| """ |
| |
| @classmethod |
| @since('0.9.0') |
| def train(cls, rdd, k, maxIterations=100, runs=1, initializationMode="k-means||", |
| seed=None, initializationSteps=2, epsilon=1e-4, initialModel=None): |
| """ |
| Train a k-means clustering model. |
| |
| :param rdd: |
| Training points as an `RDD` of `Vector` or convertible |
| sequence types. |
| :param k: |
| Number of clusters to create. |
| :param maxIterations: |
| Maximum number of iterations allowed. |
| (default: 100) |
| :param runs: |
| This param has no effect since Spark 2.0.0. |
| :param initializationMode: |
| The initialization algorithm. This can be either "random" or |
| "k-means||". |
| (default: "k-means||") |
| :param seed: |
| Random seed value for cluster initialization. Set as None to |
| generate seed based on system time. |
| (default: None) |
| :param initializationSteps: |
| Number of steps for the k-means|| initialization mode. |
| This is an advanced setting -- the default of 2 is almost |
| always enough. |
| (default: 2) |
| :param epsilon: |
| Distance threshold within which a center will be considered to |
| have converged. If all centers move less than this Euclidean |
| distance, iterations are stopped. |
| (default: 1e-4) |
| :param initialModel: |
| Initial cluster centers can be provided as a KMeansModel object |
| rather than using the random or k-means|| initializationModel. |
| (default: None) |
| """ |
| if runs != 1: |
| warnings.warn("The param `runs` has no effect since Spark 2.0.0.") |
| clusterInitialModel = [] |
| if initialModel is not None: |
| if not isinstance(initialModel, KMeansModel): |
| raise Exception("initialModel is of "+str(type(initialModel))+". It needs " |
| "to be of <type 'KMeansModel'>") |
| clusterInitialModel = [_convert_to_vector(c) for c in initialModel.clusterCenters] |
| model = callMLlibFunc("trainKMeansModel", rdd.map(_convert_to_vector), k, maxIterations, |
| runs, initializationMode, seed, initializationSteps, epsilon, |
| clusterInitialModel) |
| centers = callJavaFunc(rdd.context, model.clusterCenters) |
| return KMeansModel([c.toArray() for c in centers]) |
| |
| |
| @inherit_doc |
| class GaussianMixtureModel(JavaModelWrapper, JavaSaveable, JavaLoader): |
| |
| """ |
| A clustering model derived from the Gaussian Mixture Model method. |
| |
| >>> from pyspark.mllib.linalg import Vectors, DenseMatrix |
| >>> from numpy.testing import assert_equal |
| >>> from shutil import rmtree |
| >>> import os, tempfile |
| |
| >>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1, |
| ... 0.9,0.8,0.75,0.935, |
| ... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2), 2) |
| >>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001, |
| ... maxIterations=50, seed=10) |
| >>> labels = model.predict(clusterdata_1).collect() |
| >>> labels[0]==labels[1] |
| False |
| >>> labels[1]==labels[2] |
| False |
| >>> labels[4]==labels[5] |
| True |
| >>> model.predict([-0.1,-0.05]) |
| 0 |
| >>> softPredicted = model.predictSoft([-0.1,-0.05]) |
| >>> abs(softPredicted[0] - 1.0) < 0.001 |
| True |
| >>> abs(softPredicted[1] - 0.0) < 0.001 |
| True |
| >>> abs(softPredicted[2] - 0.0) < 0.001 |
| True |
| |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = GaussianMixtureModel.load(sc, path) |
| >>> assert_equal(model.weights, sameModel.weights) |
| >>> mus, sigmas = list( |
| ... zip(*[(g.mu, g.sigma) for g in model.gaussians])) |
| >>> sameMus, sameSigmas = list( |
| ... zip(*[(g.mu, g.sigma) for g in sameModel.gaussians])) |
| >>> mus == sameMus |
| True |
| >>> sigmas == sameSigmas |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| >>> data = array([-5.1971, -2.5359, -3.8220, |
| ... -5.2211, -5.0602, 4.7118, |
| ... 6.8989, 3.4592, 4.6322, |
| ... 5.7048, 4.6567, 5.5026, |
| ... 4.5605, 5.2043, 6.2734]) |
| >>> clusterdata_2 = sc.parallelize(data.reshape(5,3)) |
| >>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001, |
| ... maxIterations=150, seed=4) |
| >>> labels = model.predict(clusterdata_2).collect() |
| >>> labels[0]==labels[1] |
| True |
| >>> labels[2]==labels[3]==labels[4] |
| True |
| |
| .. versionadded:: 1.3.0 |
| """ |
| |
| @property |
| @since('1.4.0') |
| def weights(self): |
| """ |
| Weights for each Gaussian distribution in the mixture, where weights[i] is |
| the weight for Gaussian i, and weights.sum == 1. |
| """ |
| return array(self.call("weights")) |
| |
| @property |
| @since('1.4.0') |
| def gaussians(self): |
| """ |
| Array of MultivariateGaussian where gaussians[i] represents |
| the Multivariate Gaussian (Normal) Distribution for Gaussian i. |
| """ |
| return [ |
| MultivariateGaussian(gaussian[0], gaussian[1]) |
| for gaussian in self.call("gaussians")] |
| |
| @property |
| @since('1.4.0') |
| def k(self): |
| """Number of gaussians in mixture.""" |
| return len(self.weights) |
| |
| @since('1.3.0') |
| def predict(self, x): |
| """ |
| Find the cluster to which the point 'x' or each point in RDD 'x' |
| has maximum membership in this model. |
| |
| :param x: |
| A feature vector or an RDD of vectors representing data points. |
| :return: |
| Predicted cluster label or an RDD of predicted cluster labels |
| if the input is an RDD. |
| """ |
| if isinstance(x, RDD): |
| cluster_labels = self.predictSoft(x).map(lambda z: z.index(max(z))) |
| return cluster_labels |
| else: |
| z = self.predictSoft(x) |
| return z.argmax() |
| |
| @since('1.3.0') |
| def predictSoft(self, x): |
| """ |
| Find the membership of point 'x' or each point in RDD 'x' to all mixture components. |
| |
| :param x: |
| A feature vector or an RDD of vectors representing data points. |
| :return: |
| The membership value to all mixture components for vector 'x' |
| or each vector in RDD 'x'. |
| """ |
| if isinstance(x, RDD): |
| means, sigmas = zip(*[(g.mu, g.sigma) for g in self.gaussians]) |
| membership_matrix = callMLlibFunc("predictSoftGMM", x.map(_convert_to_vector), |
| _convert_to_vector(self.weights), means, sigmas) |
| return membership_matrix.map(lambda x: pyarray.array('d', x)) |
| else: |
| return self.call("predictSoft", _convert_to_vector(x)).toArray() |
| |
| @classmethod |
| @since('1.5.0') |
| def load(cls, sc, path): |
| """Load the GaussianMixtureModel from disk. |
| |
| :param sc: |
| SparkContext. |
| :param path: |
| Path to where the model is stored. |
| """ |
| model = cls._load_java(sc, path) |
| wrapper = sc._jvm.org.apache.spark.mllib.api.python.GaussianMixtureModelWrapper(model) |
| return cls(wrapper) |
| |
| |
| class GaussianMixture(object): |
| """ |
| Learning algorithm for Gaussian Mixtures using the expectation-maximization algorithm. |
| |
| .. versionadded:: 1.3.0 |
| """ |
| @classmethod |
| @since('1.3.0') |
| def train(cls, rdd, k, convergenceTol=1e-3, maxIterations=100, seed=None, initialModel=None): |
| """ |
| Train a Gaussian Mixture clustering model. |
| |
| :param rdd: |
| Training points as an `RDD` of `Vector` or convertible |
| sequence types. |
| :param k: |
| Number of independent Gaussians in the mixture model. |
| :param convergenceTol: |
| Maximum change in log-likelihood at which convergence is |
| considered to have occurred. |
| (default: 1e-3) |
| :param maxIterations: |
| Maximum number of iterations allowed. |
| (default: 100) |
| :param seed: |
| Random seed for initial Gaussian distribution. Set as None to |
| generate seed based on system time. |
| (default: None) |
| :param initialModel: |
| Initial GMM starting point, bypassing the random |
| initialization. |
| (default: None) |
| """ |
| initialModelWeights = None |
| initialModelMu = None |
| initialModelSigma = None |
| if initialModel is not None: |
| if initialModel.k != k: |
| raise Exception("Mismatched cluster count, initialModel.k = %s, however k = %s" |
| % (initialModel.k, k)) |
| initialModelWeights = list(initialModel.weights) |
| initialModelMu = [initialModel.gaussians[i].mu for i in range(initialModel.k)] |
| initialModelSigma = [initialModel.gaussians[i].sigma for i in range(initialModel.k)] |
| java_model = callMLlibFunc("trainGaussianMixtureModel", rdd.map(_convert_to_vector), |
| k, convergenceTol, maxIterations, seed, |
| initialModelWeights, initialModelMu, initialModelSigma) |
| return GaussianMixtureModel(java_model) |
| |
| |
| class PowerIterationClusteringModel(JavaModelWrapper, JavaSaveable, JavaLoader): |
| |
| """ |
| Model produced by [[PowerIterationClustering]]. |
| |
| >>> import math |
| >>> def genCircle(r, n): |
| ... points = [] |
| ... for i in range(0, n): |
| ... theta = 2.0 * math.pi * i / n |
| ... points.append((r * math.cos(theta), r * math.sin(theta))) |
| ... return points |
| >>> def sim(x, y): |
| ... dist2 = (x[0] - y[0]) * (x[0] - y[0]) + (x[1] - y[1]) * (x[1] - y[1]) |
| ... return math.exp(-dist2 / 2.0) |
| >>> r1 = 1.0 |
| >>> n1 = 10 |
| >>> r2 = 4.0 |
| >>> n2 = 40 |
| >>> n = n1 + n2 |
| >>> points = genCircle(r1, n1) + genCircle(r2, n2) |
| >>> similarities = [(i, j, sim(points[i], points[j])) for i in range(1, n) for j in range(0, i)] |
| >>> rdd = sc.parallelize(similarities, 2) |
| >>> model = PowerIterationClustering.train(rdd, 2, 40) |
| >>> model.k |
| 2 |
| >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) |
| >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster |
| True |
| >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster |
| True |
| >>> import os, tempfile |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = PowerIterationClusteringModel.load(sc, path) |
| >>> sameModel.k |
| 2 |
| >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) |
| >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster |
| True |
| >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| @property |
| @since('1.5.0') |
| def k(self): |
| """ |
| Returns the number of clusters. |
| """ |
| return self.call("k") |
| |
| @since('1.5.0') |
| def assignments(self): |
| """ |
| Returns the cluster assignments of this model. |
| """ |
| return self.call("getAssignments").map( |
| lambda x: (PowerIterationClustering.Assignment(*x))) |
| |
| @classmethod |
| @since('1.5.0') |
| def load(cls, sc, path): |
| """ |
| Load a model from the given path. |
| """ |
| model = cls._load_java(sc, path) |
| wrapper =\ |
| sc._jvm.org.apache.spark.mllib.api.python.PowerIterationClusteringModelWrapper(model) |
| return PowerIterationClusteringModel(wrapper) |
| |
| |
| class PowerIterationClustering(object): |
| """ |
| Power Iteration Clustering (PIC), a scalable graph clustering algorithm |
| developed by [[http://www.icml2010.org/papers/387.pdf Lin and Cohen]]. |
| From the abstract: PIC finds a very low-dimensional embedding of a |
| dataset using truncated power iteration on a normalized pair-wise |
| similarity matrix of the data. |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| @classmethod |
| @since('1.5.0') |
| def train(cls, rdd, k, maxIterations=100, initMode="random"): |
| """ |
| :param rdd: |
| An RDD of (i, j, s\ :sub:`ij`\) tuples representing the |
| affinity matrix, which is the matrix A in the PIC paper. The |
| similarity s\ :sub:`ij`\ must be nonnegative. This is a symmetric |
| matrix and hence s\ :sub:`ij`\ = s\ :sub:`ji`\ For any (i, j) with |
| nonzero similarity, there should be either (i, j, s\ :sub:`ij`\) or |
| (j, i, s\ :sub:`ji`\) in the input. Tuples with i = j are ignored, |
| because it is assumed s\ :sub:`ij`\ = 0.0. |
| :param k: |
| Number of clusters. |
| :param maxIterations: |
| Maximum number of iterations of the PIC algorithm. |
| (default: 100) |
| :param initMode: |
| Initialization mode. This can be either "random" to use |
| a random vector as vertex properties, or "degree" to use |
| normalized sum similarities. |
| (default: "random") |
| """ |
| model = callMLlibFunc("trainPowerIterationClusteringModel", |
| rdd.map(_convert_to_vector), int(k), int(maxIterations), initMode) |
| return PowerIterationClusteringModel(model) |
| |
| class Assignment(namedtuple("Assignment", ["id", "cluster"])): |
| """ |
| Represents an (id, cluster) tuple. |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| |
| class StreamingKMeansModel(KMeansModel): |
| """ |
| Clustering model which can perform an online update of the centroids. |
| |
| The update formula for each centroid is given by |
| |
| * c_t+1 = ((c_t * n_t * a) + (x_t * m_t)) / (n_t + m_t) |
| * n_t+1 = n_t * a + m_t |
| |
| where |
| |
| * c_t: Centroid at the n_th iteration. |
| * n_t: Number of samples (or) weights associated with the centroid |
| at the n_th iteration. |
| * x_t: Centroid of the new data closest to c_t. |
| * m_t: Number of samples (or) weights of the new data closest to c_t |
| * c_t+1: New centroid. |
| * n_t+1: New number of weights. |
| * a: Decay Factor, which gives the forgetfulness. |
| |
| .. note:: If a is set to 1, it is the weighted mean of the previous |
| and new data. If it set to zero, the old centroids are completely |
| forgotten. |
| |
| :param clusterCenters: |
| Initial cluster centers. |
| :param clusterWeights: |
| List of weights assigned to each cluster. |
| |
| >>> initCenters = [[0.0, 0.0], [1.0, 1.0]] |
| >>> initWeights = [1.0, 1.0] |
| >>> stkm = StreamingKMeansModel(initCenters, initWeights) |
| >>> data = sc.parallelize([[-0.1, -0.1], [0.1, 0.1], |
| ... [0.9, 0.9], [1.1, 1.1]]) |
| >>> stkm = stkm.update(data, 1.0, u"batches") |
| >>> stkm.centers |
| array([[ 0., 0.], |
| [ 1., 1.]]) |
| >>> stkm.predict([-0.1, -0.1]) |
| 0 |
| >>> stkm.predict([0.9, 0.9]) |
| 1 |
| >>> stkm.clusterWeights |
| [3.0, 3.0] |
| >>> decayFactor = 0.0 |
| >>> data = sc.parallelize([DenseVector([1.5, 1.5]), DenseVector([0.2, 0.2])]) |
| >>> stkm = stkm.update(data, 0.0, u"batches") |
| >>> stkm.centers |
| array([[ 0.2, 0.2], |
| [ 1.5, 1.5]]) |
| >>> stkm.clusterWeights |
| [1.0, 1.0] |
| >>> stkm.predict([0.2, 0.2]) |
| 0 |
| >>> stkm.predict([1.5, 1.5]) |
| 1 |
| |
| .. versionadded:: 1.5.0 |
| """ |
| def __init__(self, clusterCenters, clusterWeights): |
| super(StreamingKMeansModel, self).__init__(centers=clusterCenters) |
| self._clusterWeights = list(clusterWeights) |
| |
| @property |
| @since('1.5.0') |
| def clusterWeights(self): |
| """Return the cluster weights.""" |
| return self._clusterWeights |
| |
| @ignore_unicode_prefix |
| @since('1.5.0') |
| def update(self, data, decayFactor, timeUnit): |
| """Update the centroids, according to data |
| |
| :param data: |
| RDD with new data for the model update. |
| :param decayFactor: |
| Forgetfulness of the previous centroids. |
| :param timeUnit: |
| Can be "batches" or "points". If points, then the decay factor |
| is raised to the power of number of new points and if batches, |
| then decay factor will be used as is. |
| """ |
| if not isinstance(data, RDD): |
| raise TypeError("Data should be of an RDD, got %s." % type(data)) |
| data = data.map(_convert_to_vector) |
| decayFactor = float(decayFactor) |
| if timeUnit not in ["batches", "points"]: |
| raise ValueError( |
| "timeUnit should be 'batches' or 'points', got %s." % timeUnit) |
| vectorCenters = [_convert_to_vector(center) for center in self.centers] |
| updatedModel = callMLlibFunc( |
| "updateStreamingKMeansModel", vectorCenters, self._clusterWeights, |
| data, decayFactor, timeUnit) |
| self.centers = array(updatedModel[0]) |
| self._clusterWeights = list(updatedModel[1]) |
| return self |
| |
| |
| class StreamingKMeans(object): |
| """ |
| Provides methods to set k, decayFactor, timeUnit to configure the |
| KMeans algorithm for fitting and predicting on incoming dstreams. |
| More details on how the centroids are updated are provided under the |
| docs of StreamingKMeansModel. |
| |
| :param k: |
| Number of clusters. |
| (default: 2) |
| :param decayFactor: |
| Forgetfulness of the previous centroids. |
| (default: 1.0) |
| :param timeUnit: |
| Can be "batches" or "points". If points, then the decay factor is |
| raised to the power of number of new points and if batches, then |
| decay factor will be used as is. |
| (default: "batches") |
| |
| .. versionadded:: 1.5.0 |
| """ |
| def __init__(self, k=2, decayFactor=1.0, timeUnit="batches"): |
| self._k = k |
| self._decayFactor = decayFactor |
| if timeUnit not in ["batches", "points"]: |
| raise ValueError( |
| "timeUnit should be 'batches' or 'points', got %s." % timeUnit) |
| self._timeUnit = timeUnit |
| self._model = None |
| |
| @since('1.5.0') |
| def latestModel(self): |
| """Return the latest model""" |
| return self._model |
| |
| def _validate(self, dstream): |
| if self._model is None: |
| raise ValueError( |
| "Initial centers should be set either by setInitialCenters " |
| "or setRandomCenters.") |
| if not isinstance(dstream, DStream): |
| raise TypeError( |
| "Expected dstream to be of type DStream, " |
| "got type %s" % type(dstream)) |
| |
| @since('1.5.0') |
| def setK(self, k): |
| """Set number of clusters.""" |
| self._k = k |
| return self |
| |
| @since('1.5.0') |
| def setDecayFactor(self, decayFactor): |
| """Set decay factor.""" |
| self._decayFactor = decayFactor |
| return self |
| |
| @since('1.5.0') |
| def setHalfLife(self, halfLife, timeUnit): |
| """ |
| Set number of batches after which the centroids of that |
| particular batch has half the weightage. |
| """ |
| self._timeUnit = timeUnit |
| self._decayFactor = exp(log(0.5) / halfLife) |
| return self |
| |
| @since('1.5.0') |
| def setInitialCenters(self, centers, weights): |
| """ |
| Set initial centers. Should be set before calling trainOn. |
| """ |
| self._model = StreamingKMeansModel(centers, weights) |
| return self |
| |
| @since('1.5.0') |
| def setRandomCenters(self, dim, weight, seed): |
| """ |
| Set the initial centres to be random samples from |
| a gaussian population with constant weights. |
| """ |
| rng = random.RandomState(seed) |
| clusterCenters = rng.randn(self._k, dim) |
| clusterWeights = tile(weight, self._k) |
| self._model = StreamingKMeansModel(clusterCenters, clusterWeights) |
| return self |
| |
| @since('1.5.0') |
| def trainOn(self, dstream): |
| """Train the model on the incoming dstream.""" |
| self._validate(dstream) |
| |
| def update(rdd): |
| self._model.update(rdd, self._decayFactor, self._timeUnit) |
| |
| dstream.foreachRDD(update) |
| |
| @since('1.5.0') |
| def predictOn(self, dstream): |
| """ |
| Make predictions on a dstream. |
| Returns a transformed dstream object |
| """ |
| self._validate(dstream) |
| return dstream.map(lambda x: self._model.predict(x)) |
| |
| @since('1.5.0') |
| def predictOnValues(self, dstream): |
| """ |
| Make predictions on a keyed dstream. |
| Returns a transformed dstream object. |
| """ |
| self._validate(dstream) |
| return dstream.mapValues(lambda x: self._model.predict(x)) |
| |
| |
| class LDAModel(JavaModelWrapper, JavaSaveable, Loader): |
| |
| """ A clustering model derived from the LDA method. |
| |
| Latent Dirichlet Allocation (LDA), a topic model designed for text documents. |
| Terminology |
| - "word" = "term": an element of the vocabulary |
| - "token": instance of a term appearing in a document |
| - "topic": multinomial distribution over words representing some concept |
| References: |
| - Original LDA paper (journal version): |
| Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR, 2003. |
| |
| >>> from pyspark.mllib.linalg import Vectors |
| >>> from numpy.testing import assert_almost_equal, assert_equal |
| >>> data = [ |
| ... [1, Vectors.dense([0.0, 1.0])], |
| ... [2, SparseVector(2, {0: 1.0})], |
| ... ] |
| >>> rdd = sc.parallelize(data) |
| >>> model = LDA.train(rdd, k=2, seed=1) |
| >>> model.vocabSize() |
| 2 |
| >>> model.describeTopics() |
| [([1, 0], [0.5..., 0.49...]), ([0, 1], [0.5..., 0.49...])] |
| >>> model.describeTopics(1) |
| [([1], [0.5...]), ([0], [0.5...])] |
| |
| >>> topics = model.topicsMatrix() |
| >>> topics_expect = array([[0.5, 0.5], [0.5, 0.5]]) |
| >>> assert_almost_equal(topics, topics_expect, 1) |
| |
| >>> import os, tempfile |
| >>> from shutil import rmtree |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = LDAModel.load(sc, path) |
| >>> assert_equal(sameModel.topicsMatrix(), model.topicsMatrix()) |
| >>> sameModel.vocabSize() == model.vocabSize() |
| True |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| @since('1.5.0') |
| def topicsMatrix(self): |
| """Inferred topics, where each topic is represented by a distribution over terms.""" |
| return self.call("topicsMatrix").toArray() |
| |
| @since('1.5.0') |
| def vocabSize(self): |
| """Vocabulary size (number of terms or terms in the vocabulary)""" |
| return self.call("vocabSize") |
| |
| @since('1.6.0') |
| def describeTopics(self, maxTermsPerTopic=None): |
| """Return the topics described by weighted terms. |
| |
| WARNING: If vocabSize and k are large, this can return a large object! |
| |
| :param maxTermsPerTopic: |
| Maximum number of terms to collect for each topic. |
| (default: vocabulary size) |
| :return: |
| Array over topics. Each topic is represented as a pair of |
| matching arrays: (term indices, term weights in topic). |
| Each topic's terms are sorted in order of decreasing weight. |
| """ |
| if maxTermsPerTopic is None: |
| topics = self.call("describeTopics") |
| else: |
| topics = self.call("describeTopics", maxTermsPerTopic) |
| return topics |
| |
| @classmethod |
| @since('1.5.0') |
| def load(cls, sc, path): |
| """Load the LDAModel from disk. |
| |
| :param sc: |
| SparkContext. |
| :param path: |
| Path to where the model is stored. |
| """ |
| if not isinstance(sc, SparkContext): |
| raise TypeError("sc should be a SparkContext, got type %s" % type(sc)) |
| if not isinstance(path, basestring): |
| raise TypeError("path should be a basestring, got type %s" % type(path)) |
| model = callMLlibFunc("loadLDAModel", sc, path) |
| return LDAModel(model) |
| |
| |
| class LDA(object): |
| """ |
| .. versionadded:: 1.5.0 |
| """ |
| |
| @classmethod |
| @since('1.5.0') |
| def train(cls, rdd, k=10, maxIterations=20, docConcentration=-1.0, |
| topicConcentration=-1.0, seed=None, checkpointInterval=10, optimizer="em"): |
| """Train a LDA model. |
| |
| :param rdd: |
| RDD of documents, which are tuples of document IDs and term |
| (word) count vectors. The term count vectors are "bags of |
| words" with a fixed-size vocabulary (where the vocabulary size |
| is the length of the vector). Document IDs must be unique |
| and >= 0. |
| :param k: |
| Number of topics to infer, i.e., the number of soft cluster |
| centers. |
| (default: 10) |
| :param maxIterations: |
| Maximum number of iterations allowed. |
| (default: 20) |
| :param docConcentration: |
| Concentration parameter (commonly named "alpha") for the prior |
| placed on documents' distributions over topics ("theta"). |
| (default: -1.0) |
| :param topicConcentration: |
| Concentration parameter (commonly named "beta" or "eta") for |
| the prior placed on topics' distributions over terms. |
| (default: -1.0) |
| :param seed: |
| Random seed for cluster initialization. Set as None to generate |
| seed based on system time. |
| (default: None) |
| :param checkpointInterval: |
| Period (in iterations) between checkpoints. |
| (default: 10) |
| :param optimizer: |
| LDAOptimizer used to perform the actual calculation. Currently |
| "em", "online" are supported. |
| (default: "em") |
| """ |
| model = callMLlibFunc("trainLDAModel", rdd, k, maxIterations, |
| docConcentration, topicConcentration, seed, |
| checkpointInterval, optimizer) |
| return LDAModel(model) |
| |
| |
| def _test(): |
| import doctest |
| import pyspark.mllib.clustering |
| globs = pyspark.mllib.clustering.__dict__.copy() |
| globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) |
| (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) |
| globs['sc'].stop() |
| if failure_count: |
| exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |