| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas import set_option, reset_option |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class NumPyCompatTestsMixin: |
| @classmethod |
| def setUpClass(cls): |
| super(NumPyCompatTestsMixin, cls).setUpClass() |
| # Some nanosecond->microsecond conversions throw loss of precision errors |
| cls.spark.conf.set("spark.sql.execution.pandas.convertToArrowArraySafely", "false") |
| |
| blacklist = [ |
| # Pandas-on-Spark does not currently support |
| "conj", |
| "conjugate", |
| "isnat", |
| "matmul", |
| "frexp", |
| # Values are close enough but tests failed. |
| "log", # flaky |
| "log10", # flaky |
| "log1p", # flaky |
| "modf", |
| ] |
| |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, |
| index=[0, 1, 3, 5, 6, 8, 9, 9, 9], |
| ) |
| |
| @property |
| def psdf(self): |
| return ps.from_pandas(self.pdf) |
| |
| def test_np_add_series(self): |
| psdf = self.psdf |
| pdf = self.pdf |
| |
| self.assert_eq(np.add(psdf.a, psdf.b), np.add(pdf.a, pdf.b)) |
| |
| psdf = self.psdf |
| pdf = self.pdf |
| self.assert_eq(np.add(psdf.a, 1), np.add(pdf.a, 1)) |
| |
| def test_np_add_index(self): |
| k_index = self.psdf.index |
| p_index = self.pdf.index |
| self.assert_eq(np.add(k_index, k_index), np.add(p_index, p_index)) |
| |
| def test_np_unsupported_series(self): |
| psdf = self.psdf |
| with self.assertRaisesRegex(NotImplementedError, "pandas.*not.*support.*sqrt.*"): |
| np.sqrt(psdf.a, psdf.b) |
| |
| def test_np_unsupported_frame(self): |
| psdf = self.psdf |
| with self.assertRaisesRegex(NotImplementedError, "on-Spark.*not.*support.*sqrt.*"): |
| np.sqrt(psdf, psdf) |
| |
| psdf1 = ps.DataFrame({"A": [1, 2, 3]}) |
| psdf2 = ps.DataFrame({("A", "B"): [4, 5, 6]}) |
| with self.assertRaisesRegex(ValueError, "cannot join with no overlapping index names"): |
| np.left_shift(psdf1, psdf2) |
| |
| def test_np_spark_compat_series(self): |
| from pyspark.pandas.numpy_compat import unary_np_spark_mappings, binary_np_spark_mappings |
| |
| # Use randomly generated dataFrame |
| pdf = pd.DataFrame( |
| np.random.randint(-100, 100, size=(np.random.randint(100), 2)), columns=["a", "b"] |
| ) |
| pdf2 = pd.DataFrame( |
| np.random.randint(-100, 100, size=(len(pdf), len(pdf.columns))), columns=["a", "b"] |
| ) |
| psdf = ps.from_pandas(pdf) |
| psdf2 = ps.from_pandas(pdf2) |
| |
| for np_name, spark_func in unary_np_spark_mappings.items(): |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # unary ufunc |
| self.assert_eq(np_func(pdf.a), np_func(psdf.a), almost=True) |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| |
| for np_name, spark_func in binary_np_spark_mappings.items(): |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # binary ufunc |
| self.assert_eq(np_func(pdf.a, pdf.b), np_func(psdf.a, psdf.b), almost=True) |
| self.assert_eq(np_func(pdf.a, 1), np_func(psdf.a, 1), almost=True) |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| |
| # Test only top 5 for now. 'compute.ops_on_diff_frames' option increases too much time. |
| try: |
| set_option("compute.ops_on_diff_frames", True) |
| for np_name, spark_func in list(binary_np_spark_mappings.items())[:5]: |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # binary ufunc |
| self.assert_eq( |
| np_func(pdf.a, pdf2.b).sort_index(), |
| np_func(psdf.a, psdf2.b).sort_index(), |
| almost=True, |
| ) |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| finally: |
| reset_option("compute.ops_on_diff_frames") |
| |
| def test_np_spark_compat_frame(self): |
| from pyspark.pandas.numpy_compat import unary_np_spark_mappings, binary_np_spark_mappings |
| |
| # Use randomly generated dataFrame |
| pdf = pd.DataFrame( |
| np.random.randint(-100, 100, size=(np.random.randint(100), 2)), columns=["a", "b"] |
| ) |
| pdf2 = pd.DataFrame( |
| np.random.randint(-100, 100, size=(len(pdf), len(pdf.columns))), columns=["a", "b"] |
| ) |
| psdf = ps.from_pandas(pdf) |
| psdf2 = ps.from_pandas(pdf2) |
| |
| for np_name, spark_func in unary_np_spark_mappings.items(): |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # unary ufunc |
| self.assert_eq(np_func(pdf), np_func(psdf), almost=True) |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| |
| for np_name, spark_func in binary_np_spark_mappings.items(): |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # binary ufunc |
| self.assert_eq(np_func(pdf, pdf), np_func(psdf, psdf), almost=True) |
| self.assert_eq(np_func(pdf, 1), np_func(psdf, 1), almost=True) |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| |
| # Test only top 5 for now. 'compute.ops_on_diff_frames' option increases too much time. |
| try: |
| set_option("compute.ops_on_diff_frames", True) |
| for np_name, spark_func in list(binary_np_spark_mappings.items())[:5]: |
| np_func = getattr(np, np_name) |
| if np_name not in self.blacklist: |
| try: |
| # binary ufunc |
| self.assert_eq( |
| np_func(pdf, pdf2).sort_index(), |
| np_func(psdf, psdf2).sort_index(), |
| almost=True, |
| ) |
| |
| except Exception as e: |
| raise AssertionError("Test in '%s' function was failed." % np_name) from e |
| finally: |
| reset_option("compute.ops_on_diff_frames") |
| |
| |
| class NumPyCompatTests( |
| NumPyCompatTestsMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.test_numpy_compat import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |