blob: f754ee08a78350807c0c70aeb0fceb86f49db622 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas import set_option, reset_option
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class NumPyCompatTestsMixin:
@classmethod
def setUpClass(cls):
super(NumPyCompatTestsMixin, cls).setUpClass()
# Some nanosecond->microsecond conversions throw loss of precision errors
cls.spark.conf.set("spark.sql.execution.pandas.convertToArrowArraySafely", "false")
blacklist = [
# Pandas-on-Spark does not currently support
"conj",
"conjugate",
"isnat",
"matmul",
"frexp",
# Values are close enough but tests failed.
"log", # flaky
"log10", # flaky
"log1p", # flaky
"modf",
]
@property
def pdf(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=[0, 1, 3, 5, 6, 8, 9, 9, 9],
)
@property
def psdf(self):
return ps.from_pandas(self.pdf)
def test_np_add_series(self):
psdf = self.psdf
pdf = self.pdf
self.assert_eq(np.add(psdf.a, psdf.b), np.add(pdf.a, pdf.b))
psdf = self.psdf
pdf = self.pdf
self.assert_eq(np.add(psdf.a, 1), np.add(pdf.a, 1))
def test_np_add_index(self):
k_index = self.psdf.index
p_index = self.pdf.index
self.assert_eq(np.add(k_index, k_index), np.add(p_index, p_index))
def test_np_unsupported_series(self):
psdf = self.psdf
with self.assertRaisesRegex(NotImplementedError, "pandas.*not.*support.*sqrt.*"):
np.sqrt(psdf.a, psdf.b)
def test_np_unsupported_frame(self):
psdf = self.psdf
with self.assertRaisesRegex(NotImplementedError, "on-Spark.*not.*support.*sqrt.*"):
np.sqrt(psdf, psdf)
psdf1 = ps.DataFrame({"A": [1, 2, 3]})
psdf2 = ps.DataFrame({("A", "B"): [4, 5, 6]})
with self.assertRaisesRegex(ValueError, "cannot join with no overlapping index names"):
np.left_shift(psdf1, psdf2)
def test_np_spark_compat_series(self):
from pyspark.pandas.numpy_compat import unary_np_spark_mappings, binary_np_spark_mappings
# Use randomly generated dataFrame
pdf = pd.DataFrame(
np.random.randint(-100, 100, size=(np.random.randint(100), 2)), columns=["a", "b"]
)
pdf2 = pd.DataFrame(
np.random.randint(-100, 100, size=(len(pdf), len(pdf.columns))), columns=["a", "b"]
)
psdf = ps.from_pandas(pdf)
psdf2 = ps.from_pandas(pdf2)
for np_name, spark_func in unary_np_spark_mappings.items():
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# unary ufunc
self.assert_eq(np_func(pdf.a), np_func(psdf.a), almost=True)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
for np_name, spark_func in binary_np_spark_mappings.items():
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# binary ufunc
self.assert_eq(np_func(pdf.a, pdf.b), np_func(psdf.a, psdf.b), almost=True)
self.assert_eq(np_func(pdf.a, 1), np_func(psdf.a, 1), almost=True)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
# Test only top 5 for now. 'compute.ops_on_diff_frames' option increases too much time.
try:
set_option("compute.ops_on_diff_frames", True)
for np_name, spark_func in list(binary_np_spark_mappings.items())[:5]:
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# binary ufunc
self.assert_eq(
np_func(pdf.a, pdf2.b).sort_index(),
np_func(psdf.a, psdf2.b).sort_index(),
almost=True,
)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
finally:
reset_option("compute.ops_on_diff_frames")
def test_np_spark_compat_frame(self):
from pyspark.pandas.numpy_compat import unary_np_spark_mappings, binary_np_spark_mappings
# Use randomly generated dataFrame
pdf = pd.DataFrame(
np.random.randint(-100, 100, size=(np.random.randint(100), 2)), columns=["a", "b"]
)
pdf2 = pd.DataFrame(
np.random.randint(-100, 100, size=(len(pdf), len(pdf.columns))), columns=["a", "b"]
)
psdf = ps.from_pandas(pdf)
psdf2 = ps.from_pandas(pdf2)
for np_name, spark_func in unary_np_spark_mappings.items():
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# unary ufunc
self.assert_eq(np_func(pdf), np_func(psdf), almost=True)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
for np_name, spark_func in binary_np_spark_mappings.items():
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# binary ufunc
self.assert_eq(np_func(pdf, pdf), np_func(psdf, psdf), almost=True)
self.assert_eq(np_func(pdf, 1), np_func(psdf, 1), almost=True)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
# Test only top 5 for now. 'compute.ops_on_diff_frames' option increases too much time.
try:
set_option("compute.ops_on_diff_frames", True)
for np_name, spark_func in list(binary_np_spark_mappings.items())[:5]:
np_func = getattr(np, np_name)
if np_name not in self.blacklist:
try:
# binary ufunc
self.assert_eq(
np_func(pdf, pdf2).sort_index(),
np_func(psdf, psdf2).sort_index(),
almost=True,
)
except Exception as e:
raise AssertionError("Test in '%s' function was failed." % np_name) from e
finally:
reset_option("compute.ops_on_diff_frames")
class NumPyCompatTests(
NumPyCompatTestsMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.test_numpy_compat import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)