blob: 25e3c5b878bc97f1b4a09e3a5b72ca2c74e065fb [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
from decimal import Decimal
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
class GetDummiesMixin:
def test_get_dummies(self):
for pdf_or_ps in [
pd.Series([1, 1, 1, 2, 2, 1, 3, 4]),
# pd.Series([1, 1, 1, 2, 2, 1, 3, 4], dtype='category'),
# pd.Series(pd.Categorical([1, 1, 1, 2, 2, 1, 3, 4],
# categories=[4, 3, 2, 1])),
pd.DataFrame(
{
"a": [1, 2, 3, 4, 4, 3, 2, 1],
# 'b': pd.Categorical(list('abcdabcd')),
"b": list("abcdabcd"),
}
),
pd.DataFrame({10: [1, 2, 3, 4, 4, 3, 2, 1], 20: list("abcdabcd")}),
]:
psdf_or_psser = ps.from_pandas(pdf_or_ps)
self.assert_eq(ps.get_dummies(psdf_or_psser), pd.get_dummies(pdf_or_ps, dtype=np.int8))
psser = ps.Series([1, 1, 1, 2, 2, 1, 3, 4])
with self.assertRaisesRegex(
NotImplementedError, "get_dummies currently does not support sparse"
):
ps.get_dummies(psser, sparse=True)
with self.assertRaisesRegex(NotImplementedError, "get_dummies currently only accept"):
ps.get_dummies(ps.Series([b"1"]))
with self.assertRaisesRegex(NotImplementedError, "get_dummies currently only accept"):
ps.get_dummies(ps.Series([None]))
def test_get_dummies_date_datetime(self):
pdf = pd.DataFrame(
{
"d": [
datetime.date(2019, 1, 1),
datetime.date(2019, 1, 2),
datetime.date(2019, 1, 1),
],
"dt": [
datetime.datetime(2019, 1, 1, 0, 0, 0),
datetime.datetime(2019, 1, 1, 0, 0, 1),
datetime.datetime(2019, 1, 1, 0, 0, 0),
],
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(ps.get_dummies(psdf), pd.get_dummies(pdf, dtype=np.int8))
self.assert_eq(ps.get_dummies(psdf.d), pd.get_dummies(pdf.d, dtype=np.int8))
self.assert_eq(ps.get_dummies(psdf.dt), pd.get_dummies(pdf.dt, dtype=np.int8))
def test_get_dummies_boolean(self):
pdf = pd.DataFrame({"b": [True, False, True]})
psdf = ps.from_pandas(pdf)
self.assert_eq(ps.get_dummies(psdf), pd.get_dummies(pdf, dtype=np.int8))
self.assert_eq(ps.get_dummies(psdf.b), pd.get_dummies(pdf.b, dtype=np.int8))
def test_get_dummies_decimal(self):
pdf = pd.DataFrame({"d": [Decimal(1.0), Decimal(2.0), Decimal(1)]})
psdf = ps.from_pandas(pdf)
self.assert_eq(ps.get_dummies(psdf), pd.get_dummies(pdf, dtype=np.int8))
self.assert_eq(ps.get_dummies(psdf.d), pd.get_dummies(pdf.d, dtype=np.int8), almost=True)
def test_get_dummies_dtype(self):
pdf = pd.DataFrame(
{
# "A": pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c']),
"A": ["a", "b", "a"],
"B": [0, 0, 1],
}
)
psdf = ps.from_pandas(pdf)
exp = pd.get_dummies(pdf)
exp = exp.astype({"A_a": "float64", "A_b": "float64"})
res = ps.get_dummies(psdf, dtype="float64")
self.assert_eq(res, exp)
class GetDummiesTests(
GetDummiesMixin,
PandasOnSparkTestCase,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.reshape.test_get_dummies import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)