blob: 88f41d1aade383bcb5dee6b7474a587d2e55e1ee [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas.exceptions import SparkPandasIndexingError, SparkPandasNotImplementedError
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class IndexingLoc2DMixin:
@property
def pdf(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=[0, 1, 3, 5, 6, 8, 9, 9, 9],
)
@property
def pdf2(self):
return pd.DataFrame(
{0: [1, 2, 3, 4, 5, 6, 7, 8, 9], 1: [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=[0, 1, 3, 5, 6, 8, 9, 9, 9],
)
@property
def psdf(self):
return ps.from_pandas(self.pdf)
@property
def psdf2(self):
return ps.from_pandas(self.pdf2)
def test_loc2d_multiindex(self):
psdf = self.psdf
psdf = psdf.set_index("b", append=True)
pdf = self.pdf
pdf = pdf.set_index("b", append=True)
self.assert_eq(psdf.loc[:, :], pdf.loc[:, :])
self.assert_eq(psdf.loc[:, "a"], pdf.loc[:, "a"])
self.assert_eq(psdf.loc[5:5, "a"], pdf.loc[5:5, "a"])
self.assert_eq(psdf.loc[:, "a":"a"], pdf.loc[:, "a":"a"])
self.assert_eq(psdf.loc[:, "a":"c"], pdf.loc[:, "a":"c"])
self.assert_eq(psdf.loc[:, "b":"c"], pdf.loc[:, "b":"c"])
def test_loc2d(self):
psdf = self.psdf
pdf = self.pdf
# index indexer is always regarded as slice for duplicated values
self.assert_eq(psdf.loc[5:5, "a"], pdf.loc[5:5, "a"])
self.assert_eq(psdf.loc[[5], "a"], pdf.loc[[5], "a"])
self.assert_eq(psdf.loc[5:5, ["a"]], pdf.loc[5:5, ["a"]])
self.assert_eq(psdf.loc[[5], ["a"]], pdf.loc[[5], ["a"]])
self.assert_eq(psdf.loc[:, :], pdf.loc[:, :])
self.assert_eq(psdf.loc[3:8, "a"], pdf.loc[3:8, "a"])
self.assert_eq(psdf.loc[:8, "a"], pdf.loc[:8, "a"])
self.assert_eq(psdf.loc[3:, "a"], pdf.loc[3:, "a"])
self.assert_eq(psdf.loc[[8], "a"], pdf.loc[[8], "a"])
self.assert_eq(psdf.loc[3:8, ["a"]], pdf.loc[3:8, ["a"]])
self.assert_eq(psdf.loc[:8, ["a"]], pdf.loc[:8, ["a"]])
self.assert_eq(psdf.loc[3:, ["a"]], pdf.loc[3:, ["a"]])
# TODO?: self.assert_eq(psdf.loc[[3, 4, 3], ['a']], pdf.loc[[3, 4, 3], ['a']])
self.assertRaises(SparkPandasIndexingError, lambda: psdf.loc[3, 3, 3])
self.assertRaises(SparkPandasIndexingError, lambda: psdf.a.loc[3, 3])
self.assertRaises(SparkPandasIndexingError, lambda: psdf.a.loc[3:, 3])
self.assertRaises(SparkPandasIndexingError, lambda: psdf.a.loc[psdf.a % 2 == 0, 3])
self.assert_eq(psdf.loc[5, "a"], pdf.loc[5, "a"])
self.assert_eq(psdf.loc[9, "a"], pdf.loc[9, "a"])
self.assert_eq(psdf.loc[5, ["a"]], pdf.loc[5, ["a"]])
self.assert_eq(psdf.loc[9, ["a"]], pdf.loc[9, ["a"]])
self.assert_eq(psdf.loc[:, "a":"a"], pdf.loc[:, "a":"a"])
self.assert_eq(psdf.loc[:, "a":"d"], pdf.loc[:, "a":"d"])
self.assert_eq(psdf.loc[:, "c":"d"], pdf.loc[:, "c":"d"])
# bool list-like column select
bool_list = [True, False]
self.assert_eq(psdf.loc[:, bool_list], pdf.loc[:, bool_list])
self.assert_eq(psdf.loc[:, np.array(bool_list)], pdf.loc[:, np.array(bool_list)])
pser = pd.Series(bool_list, index=pdf.columns)
self.assert_eq(psdf.loc[:, pser], pdf.loc[:, pser])
pser = pd.Series(list(reversed(bool_list)), index=list(reversed(pdf.columns)))
self.assert_eq(psdf.loc[:, pser], pdf.loc[:, pser])
self.assertRaises(IndexError, lambda: psdf.loc[:, bool_list[:-1]])
self.assertRaises(IndexError, lambda: psdf.loc[:, np.array(bool_list + [True])])
self.assertRaises(SparkPandasIndexingError, lambda: psdf.loc[:, pd.Series(bool_list)])
# non-string column names
psdf = self.psdf2
pdf = self.pdf2
self.assert_eq(psdf.loc[5:5, 0], pdf.loc[5:5, 0])
self.assert_eq(psdf.loc[5:5, [0]], pdf.loc[5:5, [0]])
self.assert_eq(psdf.loc[3:8, 0], pdf.loc[3:8, 0])
self.assert_eq(psdf.loc[3:8, [0]], pdf.loc[3:8, [0]])
self.assert_eq(psdf.loc[:, 0:0], pdf.loc[:, 0:0])
self.assert_eq(psdf.loc[:, 0:3], pdf.loc[:, 0:3])
self.assert_eq(psdf.loc[:, 2:3], pdf.loc[:, 2:3])
def test_loc2d_multiindex_columns(self):
arrays = [np.array(["bar", "bar", "baz", "baz"]), np.array(["one", "two", "one", "two"])]
pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.loc["B":"B", "bar"], pdf.loc["B":"B", "bar"])
self.assert_eq(psdf.loc["B":"B", ["bar"]], pdf.loc["B":"B", ["bar"]])
self.assert_eq(psdf.loc[:, "bar":"bar"], pdf.loc[:, "bar":"bar"])
self.assert_eq(psdf.loc[:, "bar":("baz", "one")], pdf.loc[:, "bar":("baz", "one")])
self.assert_eq(
psdf.loc[:, ("bar", "two"):("baz", "one")], pdf.loc[:, ("bar", "two"):("baz", "one")]
)
self.assert_eq(psdf.loc[:, ("bar", "two"):"bar"], pdf.loc[:, ("bar", "two"):"bar"])
self.assert_eq(psdf.loc[:, "a":"bax"], pdf.loc[:, "a":"bax"])
self.assert_eq(
psdf.loc[:, ("bar", "x"):("baz", "a")],
pdf.loc[:, ("bar", "x"):("baz", "a")],
almost=True,
)
pdf = pd.DataFrame(
np.random.randn(3, 4),
index=["A", "B", "C"],
columns=pd.MultiIndex.from_tuples(
[("bar", "two"), ("bar", "one"), ("baz", "one"), ("baz", "two")]
),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.loc[:, "bar":"baz"], pdf.loc[:, "bar":"baz"])
self.assertRaises(KeyError, lambda: psdf.loc[:, "bar":("baz", "one")])
self.assertRaises(KeyError, lambda: psdf.loc[:, ("bar", "two"):"bar"])
# bool list-like column select
bool_list = [True, False, True, False]
self.assert_eq(psdf.loc[:, bool_list], pdf.loc[:, bool_list])
self.assert_eq(psdf.loc[:, np.array(bool_list)], pdf.loc[:, np.array(bool_list)])
pser = pd.Series(bool_list, index=pdf.columns)
self.assert_eq(psdf.loc[:, pser], pdf.loc[:, pser])
pser = pd.Series(list(reversed(bool_list)), index=list(reversed(pdf.columns)))
self.assert_eq(psdf.loc[:, pser], pdf.loc[:, pser])
# non-string column names
arrays = [np.array([0, 0, 1, 1]), np.array([1, 2, 1, 2])]
pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.loc["B":"B", 0], pdf.loc["B":"B", 0])
self.assert_eq(psdf.loc["B":"B", [0]], pdf.loc["B":"B", [0]])
self.assert_eq(psdf.loc[:, 0:0], pdf.loc[:, 0:0])
self.assert_eq(psdf.loc[:, 0:(1, 1)], pdf.loc[:, 0:(1, 1)])
self.assert_eq(psdf.loc[:, (0, 2):(1, 1)], pdf.loc[:, (0, 2):(1, 1)])
self.assert_eq(psdf.loc[:, (0, 2):0], pdf.loc[:, (0, 2):0])
self.assert_eq(psdf.loc[:, -1:2], pdf.loc[:, -1:2])
def test_loc2d_with_known_divisions(self):
pdf = pd.DataFrame(
np.random.randn(20, 5), index=list("abcdefghijklmnopqrst"), columns=list("ABCDE")
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.loc[["a"], "A"], pdf.loc[["a"], "A"])
self.assert_eq(psdf.loc[["a"], ["A"]], pdf.loc[["a"], ["A"]])
self.assert_eq(psdf.loc["a":"o", "A"], pdf.loc["a":"o", "A"])
self.assert_eq(psdf.loc["a":"o", ["A"]], pdf.loc["a":"o", ["A"]])
self.assert_eq(psdf.loc[["n"], ["A"]], pdf.loc[["n"], ["A"]])
self.assert_eq(psdf.loc[["a", "c", "n"], ["A"]], pdf.loc[["a", "c", "n"], ["A"]])
# TODO?: self.assert_eq(psdf.loc[['t', 'b'], ['A']], pdf.loc[['t', 'b'], ['A']])
# TODO?: self.assert_eq(psdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']],
# TODO?: pdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']])
@unittest.skip("TODO: should handle duplicated columns properly")
def test_loc2d_duplicated_columns(self):
pdf = pd.DataFrame(
np.random.randn(20, 5), index=list("abcdefghijklmnopqrst"), columns=list("AABCD")
)
psdf = ps.from_pandas(pdf)
# TODO?: self.assert_eq(psdf.loc[['a'], 'A'], pdf.loc[['a'], 'A'])
# TODO?: self.assert_eq(psdf.loc[['a'], ['A']], pdf.loc[['a'], ['A']])
self.assert_eq(psdf.loc[["j"], "B"], pdf.loc[["j"], "B"])
self.assert_eq(psdf.loc[["j"], ["B"]], pdf.loc[["j"], ["B"]])
# TODO?: self.assert_eq(psdf.loc['a':'o', 'A'], pdf.loc['a':'o', 'A'])
# TODO?: self.assert_eq(psdf.loc['a':'o', ['A']], pdf.loc['a':'o', ['A']])
self.assert_eq(psdf.loc["j":"q", "B"], pdf.loc["j":"q", "B"])
self.assert_eq(psdf.loc["j":"q", ["B"]], pdf.loc["j":"q", ["B"]])
# TODO?: self.assert_eq(psdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D'])
# TODO?: self.assert_eq(psdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D'])
# TODO?: self.assert_eq(psdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A'])
# TODO?: self.assert_eq(psdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A'])
self.assert_eq(psdf.loc[psdf.B > 0, "B"], pdf.loc[pdf.B > 0, "B"])
# TODO?: self.assert_eq(psdf.loc[psdf.B > 0, ['A', 'C']], pdf.loc[pdf.B > 0, ['A', 'C']])
class IndexingLoc2DTests(
IndexingLoc2DMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.indexes.test_indexing_loc_2d import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)