| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import os |
| import shutil |
| import tempfile |
| import time |
| import unittest |
| from typing import cast |
| |
| from pyspark.sql import Row |
| from pyspark.sql.functions import lit |
| from pyspark.errors import PythonException |
| from pyspark.testing.sqlutils import ( |
| ReusedSQLTestCase, |
| have_pandas, |
| have_pyarrow, |
| pandas_requirement_message, |
| pyarrow_requirement_message, |
| ) |
| from pyspark.testing.utils import QuietTest |
| |
| if have_pandas: |
| import pandas as pd |
| |
| |
| @unittest.skipIf( |
| not have_pandas or not have_pyarrow, |
| cast(str, pandas_requirement_message or pyarrow_requirement_message), |
| ) |
| class MapInPandasTestsMixin: |
| def test_map_in_pandas(self): |
| def func(iterator): |
| for pdf in iterator: |
| assert isinstance(pdf, pd.DataFrame) |
| assert pdf.columns == ["id"] |
| yield pdf |
| |
| df = self.spark.range(10, numPartitions=3) |
| actual = df.mapInPandas(func, "id long").collect() |
| expected = df.collect() |
| self.assertEqual(actual, expected) |
| |
| def test_multiple_columns(self): |
| data = [(1, "foo"), (2, None), (3, "bar"), (4, "bar")] |
| df = self.spark.createDataFrame(data, "a int, b string") |
| |
| def func(iterator): |
| for pdf in iterator: |
| assert isinstance(pdf, pd.DataFrame) |
| assert [d.name for d in list(pdf.dtypes)] == ["int32", "object"] |
| yield pdf |
| |
| actual = df.mapInPandas(func, df.schema).collect() |
| expected = df.collect() |
| self.assertEqual(actual, expected) |
| |
| def test_different_output_length(self): |
| def func(iterator): |
| for _ in iterator: |
| yield pd.DataFrame({"a": list(range(100))}) |
| |
| df = self.spark.range(10) |
| actual = df.repartition(1).mapInPandas(func, "a long").collect() |
| self.assertEqual(set((r.a for r in actual)), set(range(100))) |
| |
| def test_other_than_dataframe(self): |
| with QuietTest(self.sc): |
| self.check_other_than_dataframe() |
| |
| def check_other_than_dataframe(self): |
| def bad_iter(_): |
| return iter([1]) |
| |
| with self.assertRaisesRegex( |
| PythonException, |
| "Return type of the user-defined function should be Pandas.DataFrame, " |
| "but is <class 'int'>", |
| ): |
| self.spark.range(10, numPartitions=3).mapInPandas(bad_iter, "a int, b string").count() |
| |
| def test_empty_iterator(self): |
| def empty_iter(_): |
| return iter([]) |
| |
| mapped = self.spark.range(10, numPartitions=3).mapInPandas(empty_iter, "a int, b string") |
| self.assertEqual(mapped.count(), 0) |
| |
| def test_empty_dataframes(self): |
| def empty_dataframes(_): |
| return iter([pd.DataFrame({"a": []})]) |
| |
| mapped = self.spark.range(10, numPartitions=3).mapInPandas(empty_dataframes, "a int") |
| self.assertEqual(mapped.count(), 0) |
| |
| def test_empty_dataframes_without_columns(self): |
| def empty_dataframes_wo_columns(iterator): |
| for pdf in iterator: |
| yield pdf |
| # after yielding all elements of the iterator, also yield one dataframe without columns |
| yield pd.DataFrame([]) |
| |
| mapped = ( |
| self.spark.range(10, numPartitions=3) |
| .toDF("id") |
| .mapInPandas(empty_dataframes_wo_columns, "id int") |
| ) |
| self.assertEqual(mapped.count(), 10) |
| |
| def test_empty_dataframes_with_less_columns(self): |
| with QuietTest(self.sc): |
| self.check_empty_dataframes_with_less_columns() |
| |
| def check_empty_dataframes_with_less_columns(self): |
| def empty_dataframes_with_less_columns(iterator): |
| for pdf in iterator: |
| yield pdf |
| # after yielding all elements of the iterator, also yield a dataframe with less columns |
| yield pd.DataFrame([(1,)], columns=["id"]) |
| |
| with self.assertRaisesRegex(PythonException, "KeyError: 'value'"): |
| self.spark.range(10, numPartitions=3).withColumn("value", lit(0)).toDF( |
| "id", "value" |
| ).mapInPandas(empty_dataframes_with_less_columns, "id int, value int").collect() |
| |
| def test_chain_map_partitions_in_pandas(self): |
| def func(iterator): |
| for pdf in iterator: |
| assert isinstance(pdf, pd.DataFrame) |
| assert pdf.columns == ["id"] |
| yield pdf |
| |
| df = self.spark.range(10, numPartitions=3) |
| actual = df.mapInPandas(func, "id long").mapInPandas(func, "id long").collect() |
| expected = df.collect() |
| self.assertEqual(actual, expected) |
| |
| def test_self_join(self): |
| # SPARK-34319: self-join with MapInPandas |
| df1 = self.spark.range(10, numPartitions=3) |
| df2 = df1.mapInPandas(lambda iter: iter, "id long") |
| actual = df2.join(df2).collect() |
| expected = df1.join(df1).collect() |
| self.assertEqual(sorted(actual), sorted(expected)) |
| |
| # SPARK-33277 |
| def test_map_in_pandas_with_column_vector(self): |
| path = tempfile.mkdtemp() |
| shutil.rmtree(path) |
| |
| try: |
| self.spark.range(0, 200000, 1, 1).write.parquet(path) |
| |
| def func(iterator): |
| for pdf in iterator: |
| yield pd.DataFrame({"id": [0] * len(pdf)}) |
| |
| for offheap in ["true", "false"]: |
| with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}): |
| self.assertEquals( |
| self.spark.read.parquet(path).mapInPandas(func, "id long").head(), Row(0) |
| ) |
| finally: |
| shutil.rmtree(path) |
| |
| |
| class MapInPandasTests(ReusedSQLTestCase, MapInPandasTestsMixin): |
| @classmethod |
| def setUpClass(cls): |
| ReusedSQLTestCase.setUpClass() |
| |
| # Synchronize default timezone between Python and Java |
| cls.tz_prev = os.environ.get("TZ", None) # save current tz if set |
| tz = "America/Los_Angeles" |
| os.environ["TZ"] = tz |
| time.tzset() |
| |
| cls.sc.environment["TZ"] = tz |
| cls.spark.conf.set("spark.sql.session.timeZone", tz) |
| |
| @classmethod |
| def tearDownClass(cls): |
| del os.environ["TZ"] |
| if cls.tz_prev is not None: |
| os.environ["TZ"] = cls.tz_prev |
| time.tzset() |
| ReusedSQLTestCase.tearDownClass() |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.pandas.test_pandas_map import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |