blob: ca249c75ea5c89d0f0d05abfc7d75b2f03acb568 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Serializers for PyArrow and pandas conversions. See `pyspark.serializers` for more details.
"""
from pyspark.serializers import Serializer, read_int, write_int, UTF8Deserializer, CPickleSerializer
from pyspark.sql.pandas.types import to_arrow_type
from pyspark.sql.types import StringType, StructType, BinaryType, StructField, LongType
class SpecialLengths:
END_OF_DATA_SECTION = -1
PYTHON_EXCEPTION_THROWN = -2
TIMING_DATA = -3
END_OF_STREAM = -4
NULL = -5
START_ARROW_STREAM = -6
class ArrowCollectSerializer(Serializer):
"""
Deserialize a stream of batches followed by batch order information. Used in
PandasConversionMixin._collect_as_arrow() after invoking Dataset.collectAsArrowToPython()
in the JVM.
"""
def __init__(self):
self.serializer = ArrowStreamSerializer()
def dump_stream(self, iterator, stream):
return self.serializer.dump_stream(iterator, stream)
def load_stream(self, stream):
"""
Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields
a list of indices that can be used to put the RecordBatches in the correct order.
"""
# load the batches
for batch in self.serializer.load_stream(stream):
yield batch
# load the batch order indices or propagate any error that occurred in the JVM
num = read_int(stream)
if num == -1:
error_msg = UTF8Deserializer().loads(stream)
raise RuntimeError(
"An error occurred while calling "
"ArrowCollectSerializer.load_stream: {}".format(error_msg)
)
batch_order = []
for i in range(num):
index = read_int(stream)
batch_order.append(index)
yield batch_order
def __repr__(self):
return "ArrowCollectSerializer(%s)" % self.serializer
class ArrowStreamSerializer(Serializer):
"""
Serializes Arrow record batches as a stream.
"""
def dump_stream(self, iterator, stream):
import pyarrow as pa
writer = None
try:
for batch in iterator:
if writer is None:
writer = pa.RecordBatchStreamWriter(stream, batch.schema)
writer.write_batch(batch)
finally:
if writer is not None:
writer.close()
def load_stream(self, stream):
import pyarrow as pa
reader = pa.ipc.open_stream(stream)
for batch in reader:
yield batch
def __repr__(self):
return "ArrowStreamSerializer"
class ArrowStreamUDFSerializer(ArrowStreamSerializer):
"""
Same as :class:`ArrowStreamSerializer` but it flattens the struct to Arrow record batch
for applying each function with the raw record arrow batch. See also `DataFrame.mapInArrow`.
"""
def load_stream(self, stream):
"""
Flatten the struct into Arrow's record batches.
"""
import pyarrow as pa
batches = super(ArrowStreamUDFSerializer, self).load_stream(stream)
for batch in batches:
struct = batch.column(0)
yield [pa.RecordBatch.from_arrays(struct.flatten(), schema=pa.schema(struct.type))]
def dump_stream(self, iterator, stream):
"""
Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent.
This should be sent after creating the first record batch so in case of an error, it can
be sent back to the JVM before the Arrow stream starts.
"""
import pyarrow as pa
def wrap_and_init_stream():
should_write_start_length = True
for batch, _ in iterator:
assert isinstance(batch, pa.RecordBatch)
# Wrap the root struct
struct = pa.StructArray.from_arrays(
batch.columns, fields=pa.struct(list(batch.schema))
)
batch = pa.RecordBatch.from_arrays([struct], ["_0"])
# Write the first record batch with initialization.
if should_write_start_length:
write_int(SpecialLengths.START_ARROW_STREAM, stream)
should_write_start_length = False
yield batch
return super(ArrowStreamUDFSerializer, self).dump_stream(wrap_and_init_stream(), stream)
class ArrowStreamPandasSerializer(ArrowStreamSerializer):
"""
Serializes Pandas.Series as Arrow data with Arrow streaming format.
Parameters
----------
timezone : str
A timezone to respect when handling timestamp values
safecheck : bool
If True, conversion from Arrow to Pandas checks for overflow/truncation
assign_cols_by_name : bool
If True, then Pandas DataFrames will get columns by name
"""
def __init__(self, timezone, safecheck, assign_cols_by_name):
super(ArrowStreamPandasSerializer, self).__init__()
self._timezone = timezone
self._safecheck = safecheck
self._assign_cols_by_name = assign_cols_by_name
def arrow_to_pandas(self, arrow_column):
from pyspark.sql.pandas.types import (
_check_series_localize_timestamps,
_convert_map_items_to_dict,
)
import pyarrow
# If the given column is a date type column, creates a series of datetime.date directly
# instead of creating datetime64[ns] as intermediate data to avoid overflow caused by
# datetime64[ns] type handling.
s = arrow_column.to_pandas(date_as_object=True)
if pyarrow.types.is_timestamp(arrow_column.type) and arrow_column.type.tz is not None:
return _check_series_localize_timestamps(s, self._timezone)
elif pyarrow.types.is_map(arrow_column.type):
return _convert_map_items_to_dict(s)
else:
return s
def _create_batch(self, series):
"""
Create an Arrow record batch from the given pandas.Series or list of Series,
with optional type.
Parameters
----------
series : pandas.Series or list
A single series, list of series, or list of (series, arrow_type)
Returns
-------
pyarrow.RecordBatch
Arrow RecordBatch
"""
import pandas as pd
import pyarrow as pa
from pyspark.sql.pandas.types import (
_check_series_convert_timestamps_internal,
_convert_dict_to_map_items,
)
from pandas.api.types import is_categorical_dtype
# Make input conform to [(series1, type1), (series2, type2), ...]
if not isinstance(series, (list, tuple)) or (
len(series) == 2 and isinstance(series[1], pa.DataType)
):
series = [series]
series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series)
def create_array(s, t):
if hasattr(s.array, "__arrow_array__"):
mask = None
else:
mask = s.isnull()
# Ensure timestamp series are in expected form for Spark internal representation
if t is not None and pa.types.is_timestamp(t) and t.tz is not None:
s = _check_series_convert_timestamps_internal(s, self._timezone)
elif t is not None and pa.types.is_map(t):
s = _convert_dict_to_map_items(s)
elif is_categorical_dtype(s.dtype):
# Note: This can be removed once minimum pyarrow version is >= 0.16.1
s = s.astype(s.dtypes.categories.dtype)
try:
array = pa.Array.from_pandas(s, mask=mask, type=t, safe=self._safecheck)
except ValueError as e:
if self._safecheck:
error_msg = (
"Exception thrown when converting pandas.Series (%s) to "
+ "Arrow Array (%s). It can be caused by overflows or other "
+ "unsafe conversions warned by Arrow. Arrow safe type check "
+ "can be disabled by using SQL config "
+ "`spark.sql.execution.pandas.convertToArrowArraySafely`."
)
raise ValueError(error_msg % (s.dtype, t)) from e
else:
raise e
return array
arrs = []
for s, t in series:
if t is not None and pa.types.is_struct(t):
if not isinstance(s, pd.DataFrame):
raise ValueError(
"A field of type StructType expects a pandas.DataFrame, "
"but got: %s" % str(type(s))
)
# Input partition and result pandas.DataFrame empty, make empty Arrays with struct
if len(s) == 0 and len(s.columns) == 0:
arrs_names = [(pa.array([], type=field.type), field.name) for field in t]
# Assign result columns by schema name if user labeled with strings
elif self._assign_cols_by_name and any(isinstance(name, str) for name in s.columns):
arrs_names = [
(create_array(s[field.name], field.type), field.name) for field in t
]
# Assign result columns by position
else:
arrs_names = [
(create_array(s[s.columns[i]], field.type), field.name)
for i, field in enumerate(t)
]
struct_arrs, struct_names = zip(*arrs_names)
arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names))
else:
arrs.append(create_array(s, t))
return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))])
def dump_stream(self, iterator, stream):
"""
Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or
a list of series accompanied by an optional pyarrow type to coerce the data to.
"""
batches = (self._create_batch(series) for series in iterator)
super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream)
def load_stream(self, stream):
"""
Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series.
"""
batches = super(ArrowStreamPandasSerializer, self).load_stream(stream)
import pyarrow as pa
for batch in batches:
yield [self.arrow_to_pandas(c) for c in pa.Table.from_batches([batch]).itercolumns()]
def __repr__(self):
return "ArrowStreamPandasSerializer"
class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer):
"""
Serializer used by Python worker to evaluate Pandas UDFs
"""
def __init__(self, timezone, safecheck, assign_cols_by_name, df_for_struct=False):
super(ArrowStreamPandasUDFSerializer, self).__init__(
timezone, safecheck, assign_cols_by_name
)
self._df_for_struct = df_for_struct
def arrow_to_pandas(self, arrow_column):
import pyarrow.types as types
if self._df_for_struct and types.is_struct(arrow_column.type):
import pandas as pd
series = [
super(ArrowStreamPandasUDFSerializer, self)
.arrow_to_pandas(column)
.rename(field.name)
for column, field in zip(arrow_column.flatten(), arrow_column.type)
]
s = pd.concat(series, axis=1)
else:
s = super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas(arrow_column)
return s
def dump_stream(self, iterator, stream):
"""
Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent.
This should be sent after creating the first record batch so in case of an error, it can
be sent back to the JVM before the Arrow stream starts.
"""
def init_stream_yield_batches():
should_write_start_length = True
for series in iterator:
batch = self._create_batch(series)
if should_write_start_length:
write_int(SpecialLengths.START_ARROW_STREAM, stream)
should_write_start_length = False
yield batch
return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream)
def __repr__(self):
return "ArrowStreamPandasUDFSerializer"
class CogroupUDFSerializer(ArrowStreamPandasUDFSerializer):
def load_stream(self, stream):
"""
Deserialize Cogrouped ArrowRecordBatches to a tuple of Arrow tables and yield as two
lists of pandas.Series.
"""
import pyarrow as pa
dataframes_in_group = None
while dataframes_in_group is None or dataframes_in_group > 0:
dataframes_in_group = read_int(stream)
if dataframes_in_group == 2:
batch1 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)]
batch2 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)]
yield (
[self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch1).itercolumns()],
[self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch2).itercolumns()],
)
elif dataframes_in_group != 0:
raise ValueError(
"Invalid number of pandas.DataFrames in group {0}".format(dataframes_in_group)
)
class ApplyInPandasWithStateSerializer(ArrowStreamPandasUDFSerializer):
"""
Serializer used by Python worker to evaluate UDF for applyInPandasWithState.
Parameters
----------
timezone : str
A timezone to respect when handling timestamp values
safecheck : bool
If True, conversion from Arrow to Pandas checks for overflow/truncation
assign_cols_by_name : bool
If True, then Pandas DataFrames will get columns by name
state_object_schema : StructType
The type of state object represented as Spark SQL type
arrow_max_records_per_batch : int
Limit of the number of records that can be written to a single ArrowRecordBatch in memory.
"""
def __init__(
self,
timezone,
safecheck,
assign_cols_by_name,
state_object_schema,
arrow_max_records_per_batch,
):
super(ApplyInPandasWithStateSerializer, self).__init__(
timezone, safecheck, assign_cols_by_name
)
self.pickleSer = CPickleSerializer()
self.utf8_deserializer = UTF8Deserializer()
self.state_object_schema = state_object_schema
self.result_state_df_type = StructType(
[
StructField("properties", StringType()),
StructField("keyRowAsUnsafe", BinaryType()),
StructField("object", BinaryType()),
StructField("oldTimeoutTimestamp", LongType()),
]
)
self.result_state_pdf_arrow_type = to_arrow_type(self.result_state_df_type)
self.arrow_max_records_per_batch = arrow_max_records_per_batch
def load_stream(self, stream):
"""
Read ArrowRecordBatches from stream, deserialize them to populate a list of pair
(data chunk, state), and convert the data into a list of pandas.Series.
Please refer the doc of inner function `gen_data_and_state` for more details how
this function works in overall.
In addition, this function further groups the return of `gen_data_and_state` by the state
instance (same semantic as grouping by grouping key) and produces an iterator of data
chunks for each group, so that the caller can lazily materialize the data chunk.
"""
import pyarrow as pa
import json
from itertools import groupby
from pyspark.sql.streaming.state import GroupState
def construct_state(state_info_col):
"""
Construct state instance from the value of state information column.
"""
state_info_col_properties = state_info_col["properties"]
state_info_col_key_row = state_info_col["keyRowAsUnsafe"]
state_info_col_object = state_info_col["object"]
state_properties = json.loads(state_info_col_properties)
if state_info_col_object:
state_object = self.pickleSer.loads(state_info_col_object)
else:
state_object = None
state_properties["optionalValue"] = state_object
return GroupState(
keyAsUnsafe=state_info_col_key_row,
valueSchema=self.state_object_schema,
**state_properties,
)
def gen_data_and_state(batches):
"""
Deserialize ArrowRecordBatches and return a generator of
`(a list of pandas.Series, state)`.
The logic on deserialization is following:
1. Read the entire data part from Arrow RecordBatch.
2. Read the entire state information part from Arrow RecordBatch.
3. Loop through each state information:
3.A. Extract the data out from entire data via the information of data range.
3.B. Construct a new state instance if the state information is the first occurrence
for the current grouping key.
3.C. Leverage the existing state instance if it is already available for the current
grouping key. (Meaning it's not the first occurrence.)
3.D. Remove the cache of state instance if the state information denotes the data is
the last chunk for current grouping key.
This deserialization logic assumes that Arrow RecordBatches contain the data with the
ordering that data chunks for same grouping key will appear sequentially.
This function must avoid materializing multiple Arrow RecordBatches into memory at the
same time. And data chunks from the same grouping key should appear sequentially, to
further group them based on state instance (same state instance will be produced for
same grouping key).
"""
state_for_current_group = None
for batch in batches:
batch_schema = batch.schema
data_schema = pa.schema([batch_schema[i] for i in range(0, len(batch_schema) - 1)])
state_schema = pa.schema(
[
batch_schema[-1],
]
)
batch_columns = batch.columns
data_columns = batch_columns[0:-1]
state_column = batch_columns[-1]
data_batch = pa.RecordBatch.from_arrays(data_columns, schema=data_schema)
state_batch = pa.RecordBatch.from_arrays(
[
state_column,
],
schema=state_schema,
)
state_arrow = pa.Table.from_batches([state_batch]).itercolumns()
state_pandas = [self.arrow_to_pandas(c) for c in state_arrow][0]
for state_idx in range(0, len(state_pandas)):
state_info_col = state_pandas.iloc[state_idx]
if not state_info_col:
# no more data with grouping key + state
break
data_start_offset = state_info_col["startOffset"]
num_data_rows = state_info_col["numRows"]
is_last_chunk = state_info_col["isLastChunk"]
if state_for_current_group:
# use the state, we already have state for same group and there should be
# some data in same group being processed earlier
state = state_for_current_group
else:
# there is no state being stored for same group, construct one
state = construct_state(state_info_col)
if is_last_chunk:
# discard the state being cached for same group
state_for_current_group = None
elif not state_for_current_group:
# there's no cached state but expected to have additional data in same group
# cache the current state
state_for_current_group = state
data_batch_for_group = data_batch.slice(data_start_offset, num_data_rows)
data_arrow = pa.Table.from_batches([data_batch_for_group]).itercolumns()
data_pandas = [self.arrow_to_pandas(c) for c in data_arrow]
# state info
yield (
data_pandas,
state,
)
_batches = super(ArrowStreamPandasSerializer, self).load_stream(stream)
data_state_generator = gen_data_and_state(_batches)
# state will be same object for same grouping key
for _state, _data in groupby(data_state_generator, key=lambda x: x[1]):
yield (
_data,
_state,
)
def dump_stream(self, iterator, stream):
"""
Read through an iterator of (iterator of pandas DataFrame, state), serialize them to Arrow
RecordBatches, and write batches to stream.
"""
import pandas as pd
import pyarrow as pa
def construct_state_pdf(state):
"""
Construct a pandas DataFrame from the state instance.
"""
state_properties = state.json().encode("utf-8")
state_key_row_as_binary = state._keyAsUnsafe
if state.exists:
state_object = self.pickleSer.dumps(state._value_schema.toInternal(state._value))
else:
state_object = None
state_old_timeout_timestamp = state.oldTimeoutTimestamp
state_dict = {
"properties": [
state_properties,
],
"keyRowAsUnsafe": [
state_key_row_as_binary,
],
"object": [
state_object,
],
"oldTimeoutTimestamp": [
state_old_timeout_timestamp,
],
}
return pd.DataFrame.from_dict(state_dict)
def construct_record_batch(pdfs, pdf_data_cnt, pdf_schema, state_pdfs, state_data_cnt):
"""
Construct a new Arrow RecordBatch based on output pandas DataFrames and states. Each
one matches to the single struct field for Arrow schema, hence the return value of
Arrow RecordBatch will have schema with two fields, in `data`, `state` order.
(Readers are expected to access the field via position rather than the name. We do
not guarantee the name of the field.)
Note that Arrow RecordBatch requires all columns to have all same number of rows,
hence this function inserts empty data for state/data with less elements to compensate.
"""
max_data_cnt = max(pdf_data_cnt, state_data_cnt)
empty_row_cnt_in_data = max_data_cnt - pdf_data_cnt
empty_row_cnt_in_state = max_data_cnt - state_data_cnt
empty_rows_pdf = pd.DataFrame(
dict.fromkeys(pa.schema(pdf_schema).names),
index=[x for x in range(0, empty_row_cnt_in_data)],
)
empty_rows_state = pd.DataFrame(
columns=["properties", "keyRowAsUnsafe", "object", "oldTimeoutTimestamp"],
index=[x for x in range(0, empty_row_cnt_in_state)],
)
pdfs.append(empty_rows_pdf)
state_pdfs.append(empty_rows_state)
merged_pdf = pd.concat(pdfs, ignore_index=True)
merged_state_pdf = pd.concat(state_pdfs, ignore_index=True)
return self._create_batch(
[(merged_pdf, pdf_schema), (merged_state_pdf, self.result_state_pdf_arrow_type)]
)
def serialize_batches():
"""
Read through an iterator of (iterator of pandas DataFrame, state), and serialize them
to Arrow RecordBatches.
This function does batching on constructing the Arrow RecordBatch; a batch will be
serialized to the Arrow RecordBatch when the total number of records exceeds the
configured threshold.
"""
# a set of variables for the state of current batch which will be converted to Arrow
# RecordBatch.
pdfs = []
state_pdfs = []
pdf_data_cnt = 0
state_data_cnt = 0
return_schema = None
for data in iterator:
# data represents the result of each call of user function
packaged_result = data[0]
# There are two results from the call of user function:
# 1) iterator of pandas DataFrame (output)
# 2) updated state instance
pdf_iter = packaged_result[0][0]
state = packaged_result[0][1]
# This is static and won't change across batches.
return_schema = packaged_result[1]
for pdf in pdf_iter:
# We ignore empty pandas DataFrame.
if len(pdf) > 0:
pdf_data_cnt += len(pdf)
pdfs.append(pdf)
# If the total number of records in current batch exceeds the configured
# threshold, time to construct the Arrow RecordBatch from the batch.
if pdf_data_cnt > self.arrow_max_records_per_batch:
batch = construct_record_batch(
pdfs, pdf_data_cnt, return_schema, state_pdfs, state_data_cnt
)
# Reset the variables to start with new batch for further data.
pdfs = []
state_pdfs = []
pdf_data_cnt = 0
state_data_cnt = 0
yield batch
# This has to be performed 'after' evaluating all elements in iterator, so that
# the user function has been completed and the state is guaranteed to be updated.
state_pdf = construct_state_pdf(state)
state_pdfs.append(state_pdf)
state_data_cnt += 1
# processed all output, but current batch may not be flushed yet.
if pdf_data_cnt > 0 or state_data_cnt > 0:
batch = construct_record_batch(
pdfs, pdf_data_cnt, return_schema, state_pdfs, state_data_cnt
)
yield batch
def init_stream_yield_batches(batches):
"""
This function helps to ensure the requirement for Pandas UDFs - Pandas UDFs require a
START_ARROW_STREAM before the Arrow stream is sent.
START_ARROW_STREAM should be sent after creating the first record batch so in case of
an error, it can be sent back to the JVM before the Arrow stream starts.
"""
should_write_start_length = True
for batch in batches:
if should_write_start_length:
write_int(SpecialLengths.START_ARROW_STREAM, stream)
should_write_start_length = False
yield batch
batches_to_write = init_stream_yield_batches(serialize_batches())
return ArrowStreamSerializer.dump_stream(self, batches_to_write, stream)