| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import sys |
| from typing import Union, TYPE_CHECKING |
| |
| from pyspark.rdd import PythonEvalType |
| from pyspark.sql.types import StructType |
| |
| if TYPE_CHECKING: |
| from pyspark.sql.dataframe import DataFrame |
| from pyspark.sql.pandas._typing import PandasMapIterFunction, ArrowMapIterFunction |
| |
| |
| class PandasMapOpsMixin: |
| """ |
| Min-in for pandas map operations. Currently, only :class:`DataFrame` |
| can use this class. |
| """ |
| |
| def mapInPandas( |
| self, func: "PandasMapIterFunction", schema: Union[StructType, str] |
| ) -> "DataFrame": |
| """ |
| Maps an iterator of batches in the current :class:`DataFrame` using a Python native |
| function that takes and outputs a pandas DataFrame, and returns the result as a |
| :class:`DataFrame`. |
| |
| The function should take an iterator of `pandas.DataFrame`\\s and return |
| another iterator of `pandas.DataFrame`\\s. All columns are passed |
| together as an iterator of `pandas.DataFrame`\\s to the function and the |
| returned iterator of `pandas.DataFrame`\\s are combined as a :class:`DataFrame`. |
| Each `pandas.DataFrame` size can be controlled by |
| `spark.sql.execution.arrow.maxRecordsPerBatch`. The size of the function's input and |
| output can be different. |
| |
| .. versionadded:: 3.0.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| func : function |
| a Python native function that takes an iterator of `pandas.DataFrame`\\s, and |
| outputs an iterator of `pandas.DataFrame`\\s. |
| schema : :class:`pyspark.sql.types.DataType` or str |
| the return type of the `func` in PySpark. The value can be either a |
| :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql.functions import pandas_udf |
| >>> df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age")) |
| >>> def filter_func(iterator): |
| ... for pdf in iterator: |
| ... yield pdf[pdf.id == 1] |
| >>> df.mapInPandas(filter_func, df.schema).show() # doctest: +SKIP |
| +---+---+ |
| | id|age| |
| +---+---+ |
| | 1| 21| |
| +---+---+ |
| |
| Notes |
| ----- |
| This API is experimental |
| |
| See Also |
| -------- |
| pyspark.sql.functions.pandas_udf |
| """ |
| from pyspark.sql import DataFrame |
| from pyspark.sql.pandas.functions import pandas_udf |
| |
| assert isinstance(self, DataFrame) |
| |
| # The usage of the pandas_udf is internal so type checking is disabled. |
| udf = pandas_udf( |
| func, returnType=schema, functionType=PythonEvalType.SQL_MAP_PANDAS_ITER_UDF |
| ) # type: ignore[call-overload] |
| udf_column = udf(*[self[col] for col in self.columns]) |
| jdf = self._jdf.mapInPandas(udf_column._jc.expr()) |
| return DataFrame(jdf, self.sparkSession) |
| |
| def mapInArrow( |
| self, func: "ArrowMapIterFunction", schema: Union[StructType, str] |
| ) -> "DataFrame": |
| """ |
| Maps an iterator of batches in the current :class:`DataFrame` using a Python native |
| function that takes and outputs a PyArrow's `RecordBatch`, and returns the result as a |
| :class:`DataFrame`. |
| |
| The function should take an iterator of `pyarrow.RecordBatch`\\s and return |
| another iterator of `pyarrow.RecordBatch`\\s. All columns are passed |
| together as an iterator of `pyarrow.RecordBatch`\\s to the function and the |
| returned iterator of `pyarrow.RecordBatch`\\s are combined as a :class:`DataFrame`. |
| Each `pyarrow.RecordBatch` size can be controlled by |
| `spark.sql.execution.arrow.maxRecordsPerBatch`. The size of the function's input and |
| output can be different. |
| |
| .. versionadded:: 3.3.0 |
| |
| Parameters |
| ---------- |
| func : function |
| a Python native function that takes an iterator of `pyarrow.RecordBatch`\\s, and |
| outputs an iterator of `pyarrow.RecordBatch`\\s. |
| schema : :class:`pyspark.sql.types.DataType` or str |
| the return type of the `func` in PySpark. The value can be either a |
| :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. |
| |
| Examples |
| -------- |
| >>> import pyarrow # doctest: +SKIP |
| >>> df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age")) |
| >>> def filter_func(iterator): |
| ... for batch in iterator: |
| ... pdf = batch.to_pandas() |
| ... yield pyarrow.RecordBatch.from_pandas(pdf[pdf.id == 1]) |
| >>> df.mapInArrow(filter_func, df.schema).show() # doctest: +SKIP |
| +---+---+ |
| | id|age| |
| +---+---+ |
| | 1| 21| |
| +---+---+ |
| |
| Notes |
| ----- |
| This API is unstable, and for developers. |
| |
| See Also |
| -------- |
| pyspark.sql.functions.pandas_udf |
| pyspark.sql.DataFrame.mapInPandas |
| """ |
| from pyspark.sql import DataFrame |
| from pyspark.sql.pandas.functions import pandas_udf |
| |
| assert isinstance(self, DataFrame) |
| |
| # The usage of the pandas_udf is internal so type checking is disabled. |
| udf = pandas_udf( |
| func, returnType=schema, functionType=PythonEvalType.SQL_MAP_ARROW_ITER_UDF |
| ) # type: ignore[call-overload] |
| udf_column = udf(*[self[col] for col in self.columns]) |
| jdf = self._jdf.pythonMapInArrow(udf_column._jc.expr()) |
| return DataFrame(jdf, self.sparkSession) |
| |
| |
| def _test() -> None: |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.sql.pandas.map_ops |
| |
| globs = pyspark.sql.pandas.map_ops.__dict__.copy() |
| spark = ( |
| SparkSession.builder.master("local[4]").appName("sql.pandas.map_ops tests").getOrCreate() |
| ) |
| globs["spark"] = spark |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.pandas.map_ops, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF, |
| ) |
| spark.stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |