blob: ddd9e296625f96b6c2c9303d54cdbbf22c331f65 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pandas as pd
from pyspark.sql import functions as F
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
class DefaultIndexTest(PandasOnSparkTestCase):
def test_default_index_sequence(self):
with ps.option_context("compute.default_index_type", "sequence"):
sdf = self.spark.range(1000)
self.assert_eq(ps.DataFrame(sdf), pd.DataFrame({"id": list(range(1000))}))
def test_default_index_distributed_sequence(self):
with ps.option_context("compute.default_index_type", "distributed-sequence"):
sdf = self.spark.range(1000)
self.assert_eq(ps.DataFrame(sdf), pd.DataFrame({"id": list(range(1000))}))
def test_default_index_distributed(self):
with ps.option_context("compute.default_index_type", "distributed"):
sdf = self.spark.range(1000)
pdf = ps.DataFrame(sdf)._to_pandas()
self.assertEqual(len(set(pdf.index)), len(pdf))
def test_index_distributed_sequence_cleanup(self):
with ps.option_context(
"compute.default_index_type", "distributed-sequence"
), ps.option_context("compute.ops_on_diff_frames", True):
with ps.option_context("compute.default_index_cache", "LOCAL_CHECKPOINT"):
cached_rdd_ids = [rdd_id for rdd_id in self.spark._jsc.getPersistentRDDs()]
psdf1 = (
self.spark.range(0, 100, 1, 10).withColumn("Key", F.col("id") % 33).pandas_api()
)
psdf2 = psdf1["Key"].reset_index()
psdf2["index"] = (psdf2.groupby(["Key"]).cumcount() == 0).astype(int)
psdf2["index"] = psdf2["index"].cumsum()
psdf3 = ps.merge(psdf1, psdf2, how="inner", left_on=["Key"], right_on=["Key"])
_ = len(psdf3)
# newly cached rdd
self.assertTrue(
any(
rdd_id not in cached_rdd_ids
for rdd_id in self.spark._jsc.getPersistentRDDs()
)
)
for storage_level in ["NONE", "DISK_ONLY_2", "MEMORY_AND_DISK_SER"]:
with ps.option_context("compute.default_index_cache", storage_level):
cached_rdd_ids = [rdd_id for rdd_id in self.spark._jsc.getPersistentRDDs()]
psdf1 = (
self.spark.range(0, 100, 1, 10)
.withColumn("Key", F.col("id") % 33)
.pandas_api()
)
psdf2 = psdf1["Key"].reset_index()
psdf2["index"] = (psdf2.groupby(["Key"]).cumcount() == 0).astype(int)
psdf2["index"] = psdf2["index"].cumsum()
psdf3 = ps.merge(psdf1, psdf2, how="inner", left_on=["Key"], right_on=["Key"])
_ = len(psdf3)
# no newly cached rdd
self.assertTrue(
all(
rdd_id in cached_rdd_ids
for rdd_id in self.spark._jsc.getPersistentRDDs()
)
)
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.test_default_index import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)