| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import base64 |
| from io import BytesIO |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import set_option, reset_option |
| from pyspark.testing.pandasutils import ( |
| have_matplotlib, |
| matplotlib_requirement_message, |
| PandasOnSparkTestCase, |
| TestUtils, |
| ) |
| |
| if have_matplotlib: |
| import matplotlib |
| from matplotlib import pyplot as plt |
| |
| matplotlib.use("agg") |
| |
| |
| @unittest.skipIf(not have_matplotlib, matplotlib_requirement_message) |
| class SeriesPlotMatplotlibTest(PandasOnSparkTestCase, TestUtils): |
| @classmethod |
| def setUpClass(cls): |
| super().setUpClass() |
| pd.set_option("plotting.backend", "matplotlib") |
| set_option("plotting.backend", "matplotlib") |
| set_option("plotting.max_rows", 1000) |
| |
| @classmethod |
| def tearDownClass(cls): |
| pd.reset_option("plotting.backend") |
| reset_option("plotting.backend") |
| reset_option("plotting.max_rows") |
| super().tearDownClass() |
| |
| @property |
| def pdf1(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] |
| ) |
| |
| @property |
| def psdf1(self): |
| return ps.from_pandas(self.pdf1) |
| |
| @property |
| def psdf2(self): |
| return ps.range(1002) |
| |
| @property |
| def pdf2(self): |
| return self.psdf2._to_pandas() |
| |
| @staticmethod |
| def plot_to_base64(ax): |
| bytes_data = BytesIO() |
| ax.figure.savefig(bytes_data, format="png") |
| bytes_data.seek(0) |
| b64_data = base64.b64encode(bytes_data.read()) |
| plt.close(ax.figure) |
| return b64_data |
| |
| def test_bar_plot(self): |
| pdf = self.pdf1 |
| psdf = self.psdf1 |
| |
| ax1 = pdf["a"].plot(kind="bar", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="bar", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot(kind="bar", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="bar", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_bar_plot_limited(self): |
| pdf = self.pdf2 |
| psdf = self.psdf2 |
| |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["id"][:1000].plot.bar(colormap="Paired") |
| ax1.text( |
| 1, |
| 1, |
| "showing top 1000 elements only", |
| size=6, |
| ha="right", |
| va="bottom", |
| transform=ax1.transAxes, |
| ) |
| bin1 = self.plot_to_base64(ax1) |
| |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["id"].plot.bar(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| |
| self.assertEqual(bin1, bin2) |
| |
| def test_pie_plot(self): |
| pdf = self.pdf1 |
| psdf = self.psdf1 |
| |
| ax1 = pdf["a"].plot.pie(colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot.pie(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot(kind="pie", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="pie", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_pie_plot_limited(self): |
| pdf = self.pdf2 |
| psdf = self.psdf2 |
| |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["id"][:1000].plot.pie(colormap="Paired") |
| ax1.text( |
| 1, |
| 1, |
| "showing top 1000 elements only", |
| size=6, |
| ha="right", |
| va="bottom", |
| transform=ax1.transAxes, |
| ) |
| bin1 = self.plot_to_base64(ax1) |
| |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["id"].plot.pie(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| |
| self.assertEqual(bin1, bin2) |
| |
| def test_line_plot(self): |
| pdf = self.pdf1 |
| psdf = self.psdf1 |
| |
| ax1 = pdf["a"].plot(kind="line", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="line", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot.line(colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot.line(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_barh_plot(self): |
| pdf = self.pdf1 |
| psdf = self.psdf1 |
| |
| ax1 = pdf["a"].plot(kind="barh", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="barh", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_barh_plot_limited(self): |
| pdf = self.pdf2 |
| psdf = self.psdf2 |
| |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["id"][:1000].plot.barh(colormap="Paired") |
| ax1.text( |
| 1, |
| 1, |
| "showing top 1000 elements only", |
| size=6, |
| ha="right", |
| va="bottom", |
| transform=ax1.transAxes, |
| ) |
| bin1 = self.plot_to_base64(ax1) |
| |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["id"].plot.barh(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| |
| self.assertEqual(bin1, bin2) |
| |
| def test_hist(self): |
| pdf = pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] |
| ) |
| |
| psdf = ps.from_pandas(pdf) |
| |
| def plot_to_base64(ax): |
| bytes_data = BytesIO() |
| ax.figure.savefig(bytes_data, format="png") |
| bytes_data.seek(0) |
| b64_data = base64.b64encode(bytes_data.read()) |
| plt.close(ax.figure) |
| return b64_data |
| |
| _, ax1 = plt.subplots(1, 1) |
| # Using plot.hist() because pandas changes ticks props when called hist() |
| ax1 = pdf["a"].plot.hist() |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["a"].hist() |
| self.assert_eq(plot_to_base64(ax1), plot_to_base64(ax2)) |
| |
| def test_hist_plot(self): |
| pdf = self.pdf1 |
| psdf = self.psdf1 |
| |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["a"].plot.hist() |
| bin1 = self.plot_to_base64(ax1) |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["a"].plot.hist() |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot.hist(bins=15) |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot.hist(bins=15) |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot(kind="hist", bins=15) |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot(kind="hist", bins=15) |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["a"].plot.hist(bins=3, bottom=[2, 1, 3]) |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["a"].plot.hist(bins=3, bottom=[2, 1, 3]) |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_area_plot(self): |
| pdf = pd.DataFrame( |
| { |
| "sales": [3, 2, 3, 9, 10, 6], |
| "signups": [5, 5, 6, 12, 14, 13], |
| "visits": [20, 42, 28, 62, 81, 50], |
| }, |
| index=pd.date_range(start="2018/01/01", end="2018/07/01", freq="M"), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| ax1 = pdf["sales"].plot(kind="area", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["sales"].plot(kind="area", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| ax1 = pdf["sales"].plot.area(colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf["sales"].plot.area(colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| # just a sanity check for df.col type |
| ax1 = pdf.sales.plot(kind="area", colormap="Paired") |
| bin1 = self.plot_to_base64(ax1) |
| ax2 = psdf.sales.plot(kind="area", colormap="Paired") |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| def test_box_plot(self): |
| def check_box_plot(pser, psser, *args, **kwargs): |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pser.plot.box(*args, **kwargs) |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psser.plot.box(*args, **kwargs) |
| |
| diffs = [ |
| np.array([0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0, 0.5]), |
| np.array([0, 0.5, 0, 0]), |
| np.array([0, -0.5, 0, 0]), |
| ] |
| |
| try: |
| for i, (line1, line2) in enumerate(zip(ax1.get_lines(), ax2.get_lines())): |
| expected = line1.get_xydata().ravel() |
| actual = line2.get_xydata().ravel() |
| if i < 3: |
| actual += diffs[i] |
| self.assert_eq(pd.Series(expected), pd.Series(actual)) |
| finally: |
| ax1.cla() |
| ax2.cla() |
| |
| # Non-named Series |
| pser = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], [0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10]) |
| psser = ps.from_pandas(pser) |
| |
| spec = [(self.pdf1.a, self.psdf1.a), (pser, psser)] |
| |
| for p, k in spec: |
| check_box_plot(p, k) |
| check_box_plot(p, k, showfliers=True) |
| check_box_plot(p, k, sym="") |
| check_box_plot(p, k, sym=".", color="r") |
| check_box_plot(p, k, use_index=False, labels=["Test"]) |
| check_box_plot(p, k, usermedians=[2.0]) |
| check_box_plot(p, k, conf_intervals=[(1.0, 3.0)]) |
| |
| val = (1, 3) |
| self.assertRaises( |
| ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, usermedians=[2.0, 3.0]) |
| ) |
| self.assertRaises( |
| ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, conf_intervals=[val, val]) |
| ) |
| self.assertRaises( |
| ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, conf_intervals=[(1,)]) |
| ) |
| |
| def test_kde_plot(self): |
| def moving_average(a, n=10): |
| ret = np.cumsum(a, dtype=float) |
| ret[n:] = ret[n:] - ret[:-n] |
| return ret[n - 1 :] / n |
| |
| def check_kde_plot(pdf, psdf, *args, **kwargs): |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["a"].plot.kde(*args, **kwargs) |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["a"].plot.kde(*args, **kwargs) |
| |
| try: |
| for i, (line1, line2) in enumerate(zip(ax1.get_lines(), ax2.get_lines())): |
| expected = line1.get_xydata().ravel() |
| actual = line2.get_xydata().ravel() |
| # TODO: Due to implementation difference, the output is different comparing |
| # to pandas'. We should identify the root cause of difference, and reduce |
| # the diff. |
| |
| # Note: Data is from 1 to 50. So, it smooths them by moving average and compares |
| # both. |
| self.assertTrue( |
| np.allclose(moving_average(actual), moving_average(expected), rtol=3) |
| ) |
| finally: |
| ax1.cla() |
| ax2.cla() |
| |
| check_kde_plot(self.pdf1, self.psdf1, bw_method=0.3) |
| check_kde_plot(self.pdf1, self.psdf1, ind=[1, 2, 3, 4, 5], bw_method=3.0) |
| |
| def test_empty_hist(self): |
| pdf = self.pdf1.assign(categorical="A") |
| psdf = ps.from_pandas(pdf) |
| psser = psdf["categorical"] |
| |
| with self.assertRaisesRegex(TypeError, "Empty 'DataFrame': no numeric data to plot"): |
| psser.plot.hist() |
| |
| def test_single_value_hist(self): |
| pdf = self.pdf1.assign(single=2) |
| psdf = ps.from_pandas(pdf) |
| |
| _, ax1 = plt.subplots(1, 1) |
| ax1 = pdf["single"].plot.hist() |
| bin1 = self.plot_to_base64(ax1) |
| _, ax2 = plt.subplots(1, 1) |
| ax2 = psdf["single"].plot.hist() |
| bin2 = self.plot_to_base64(ax2) |
| self.assertEqual(bin1, bin2) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.plot.test_series_plot_matplotlib import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |