| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import pandas as pd |
| import numpy as np |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import set_option, reset_option, option_context |
| from pyspark.pandas.plot import TopNPlotBase, SampledPlotBase, HistogramPlotBase, BoxPlotBase |
| from pyspark.pandas.exceptions import PandasNotImplementedError |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| |
| |
| class DataFramePlotTest(PandasOnSparkTestCase): |
| @classmethod |
| def setUpClass(cls): |
| super().setUpClass() |
| set_option("plotting.max_rows", 2000) |
| set_option("plotting.sample_ratio", None) |
| |
| @classmethod |
| def tearDownClass(cls): |
| reset_option("plotting.max_rows") |
| reset_option("plotting.sample_ratio") |
| super().tearDownClass() |
| |
| def test_missing(self): |
| psdf = ps.DataFrame(np.random.rand(2500, 4), columns=["a", "b", "c", "d"]) |
| |
| unsupported_functions = ["hexbin"] |
| |
| for name in unsupported_functions: |
| with self.assertRaisesRegex( |
| PandasNotImplementedError, "method.*DataFrame.*{}.*not implemented".format(name) |
| ): |
| getattr(psdf.plot, name)() |
| |
| def test_topn_max_rows(self): |
| |
| pdf = pd.DataFrame(np.random.rand(2500, 4), columns=["a", "b", "c", "d"]) |
| psdf = ps.from_pandas(pdf) |
| |
| data = TopNPlotBase().get_top_n(psdf) |
| self.assertEqual(len(data), 2000) |
| |
| def test_sampled_plot_with_ratio(self): |
| with option_context("plotting.sample_ratio", 0.5): |
| pdf = pd.DataFrame(np.random.rand(2500, 4), columns=["a", "b", "c", "d"]) |
| psdf = ps.from_pandas(pdf) |
| data = SampledPlotBase().get_sampled(psdf) |
| self.assertEqual(round(len(data) / 2500, 1), 0.5) |
| |
| def test_sampled_plot_with_max_rows(self): |
| # 'plotting.max_rows' is 2000 |
| pdf = pd.DataFrame(np.random.rand(2000, 4), columns=["a", "b", "c", "d"]) |
| psdf = ps.from_pandas(pdf) |
| data = SampledPlotBase().get_sampled(psdf) |
| self.assertEqual(round(len(data) / 2000, 1), 1) |
| |
| def test_compute_hist_single_column(self): |
| psdf = ps.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] |
| ) |
| |
| expected_bins = np.linspace(1, 50, 11) |
| bins = HistogramPlotBase.get_bins(psdf[["a"]].to_spark(), 10) |
| |
| expected_histogram = np.array([5, 4, 1, 0, 0, 0, 0, 0, 0, 1]) |
| histogram = HistogramPlotBase.compute_hist(psdf[["a"]], bins)[0] |
| self.assert_eq(pd.Series(expected_bins), pd.Series(bins)) |
| self.assert_eq(pd.Series(expected_histogram, name="a"), histogram, almost=True) |
| |
| def test_compute_hist_multi_columns(self): |
| expected_bins = np.linspace(1, 50, 11) |
| psdf = ps.DataFrame( |
| { |
| "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], |
| "b": [50, 50, 30, 30, 30, 24, 10, 5, 4, 3, 1], |
| } |
| ) |
| |
| bins = HistogramPlotBase.get_bins(psdf.to_spark(), 10) |
| self.assert_eq(pd.Series(expected_bins), pd.Series(bins)) |
| |
| expected_histograms = [ |
| np.array([5, 4, 1, 0, 0, 0, 0, 0, 0, 1]), |
| np.array([4, 1, 0, 0, 1, 3, 0, 0, 0, 2]), |
| ] |
| histograms = HistogramPlotBase.compute_hist(psdf, bins) |
| expected_names = ["a", "b"] |
| |
| for histogram, expected_histogram, expected_name in zip( |
| histograms, expected_histograms, expected_names |
| ): |
| self.assert_eq( |
| pd.Series(expected_histogram, name=expected_name), histogram, almost=True |
| ) |
| |
| def test_compute_box_multi_columns(self): |
| # compare compute_multicol_stats with compute_stats |
| def check_box_multi_columns(psdf): |
| k = 1.5 |
| multicol_stats = BoxPlotBase.compute_multicol_stats( |
| psdf, ["a", "b", "c"], whis=k, precision=0.01 |
| ) |
| multicol_outliers = BoxPlotBase.multicol_outliers(psdf, multicol_stats) |
| multicol_whiskers = BoxPlotBase.calc_multicol_whiskers( |
| ["a", "b", "c"], multicol_outliers |
| ) |
| |
| for col in ["a", "b", "c"]: |
| col_stats = multicol_stats[col] |
| col_whiskers = multicol_whiskers[col] |
| |
| stats, fences = BoxPlotBase.compute_stats(psdf[col], col, whis=k, precision=0.01) |
| outliers = BoxPlotBase.outliers(psdf[col], col, *fences) |
| whiskers = BoxPlotBase.calc_whiskers(col, outliers) |
| |
| self.assertEqual(stats["mean"], col_stats["mean"]) |
| self.assertEqual(stats["med"], col_stats["med"]) |
| self.assertEqual(stats["q1"], col_stats["q1"]) |
| self.assertEqual(stats["q3"], col_stats["q3"]) |
| self.assertEqual(fences[0], col_stats["lfence"]) |
| self.assertEqual(fences[1], col_stats["ufence"]) |
| self.assertEqual(whiskers[0], col_whiskers["min"]) |
| self.assertEqual(whiskers[1], col_whiskers["max"]) |
| |
| pdf = pd.DataFrame( |
| { |
| "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], |
| "b": [3, 2, 5, 4, 5, 6, 8, 8, 11, 60, 90], |
| "c": [-30, -2, 5, 4, 5, 6, -8, 8, 11, 12, 18], |
| }, |
| index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10], |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| check_box_multi_columns(psdf) |
| check_box_multi_columns(-psdf) |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.plot.test_frame_plot import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |