| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import tempfile |
| import unittest |
| |
| from pyspark.ml.classification import LogisticRegression, OneVsRest |
| from pyspark.ml.evaluation import MulticlassClassificationEvaluator |
| from pyspark.ml.linalg import Vectors |
| from pyspark.ml.tuning import ( |
| ParamGridBuilder, |
| TrainValidationSplit, |
| TrainValidationSplitModel, |
| ) |
| from pyspark.testing.mlutils import ( |
| DummyLogisticRegression, |
| SparkSessionTestCase, |
| ) |
| from pyspark.ml.tests.tuning.test_tuning import ValidatorTestUtilsMixin |
| |
| |
| class TrainValidationSplitIONestedTests(SparkSessionTestCase, ValidatorTestUtilsMixin): |
| def _run_test_save_load_nested_estimator(self, LogisticRegressionCls): |
| # This tests saving and loading the trained model only. |
| # Save/load for TrainValidationSplit will be added later: SPARK-13786 |
| temp_path = tempfile.mkdtemp() |
| dataset = self.spark.createDataFrame( |
| [ |
| (Vectors.dense([0.0]), 0.0), |
| (Vectors.dense([0.4]), 1.0), |
| (Vectors.dense([0.5]), 0.0), |
| (Vectors.dense([0.6]), 1.0), |
| (Vectors.dense([1.0]), 1.0), |
| ] |
| * 10, |
| ["features", "label"], |
| ) |
| ova = OneVsRest(classifier=LogisticRegressionCls()) |
| lr1 = LogisticRegressionCls().setMaxIter(100) |
| lr2 = LogisticRegressionCls().setMaxIter(150) |
| grid = ParamGridBuilder().addGrid(ova.classifier, [lr1, lr2]).build() |
| evaluator = MulticlassClassificationEvaluator() |
| |
| tvs = TrainValidationSplit(estimator=ova, estimatorParamMaps=grid, evaluator=evaluator) |
| tvsModel = tvs.fit(dataset) |
| tvsPath = temp_path + "/tvs" |
| tvs.save(tvsPath) |
| loadedTvs = TrainValidationSplit.load(tvsPath) |
| self.assert_param_maps_equal(loadedTvs.getEstimatorParamMaps(), grid) |
| self.assertEqual(loadedTvs.getEstimator().uid, tvs.getEstimator().uid) |
| self.assertEqual(loadedTvs.getEvaluator().uid, tvs.getEvaluator().uid) |
| |
| originalParamMap = tvs.getEstimatorParamMaps() |
| loadedParamMap = loadedTvs.getEstimatorParamMaps() |
| for i, param in enumerate(loadedParamMap): |
| for p in param: |
| if p.name == "classifier": |
| self.assertEqual(param[p].uid, originalParamMap[i][p].uid) |
| else: |
| self.assertEqual(param[p], originalParamMap[i][p]) |
| |
| tvsModelPath = temp_path + "/tvsModel" |
| tvsModel.save(tvsModelPath) |
| loadedModel = TrainValidationSplitModel.load(tvsModelPath) |
| self.assert_param_maps_equal(loadedModel.getEstimatorParamMaps(), grid) |
| self.assertEqual(loadedModel.bestModel.uid, tvsModel.bestModel.uid) |
| |
| def test_save_load_nested_estimator(self): |
| self._run_test_save_load_nested_estimator(LogisticRegression) |
| self._run_test_save_load_nested_estimator(DummyLogisticRegression) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.ml.tests.tuning.test_tvs_io_nested import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |