| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import tempfile |
| import unittest |
| |
| from pyspark.ml.classification import LogisticRegression, LogisticRegressionModel |
| from pyspark.ml.evaluation import BinaryClassificationEvaluator |
| from pyspark.ml.linalg import Vectors |
| from pyspark.ml.tuning import ( |
| CrossValidator, |
| CrossValidatorModel, |
| ParamGridBuilder, |
| ) |
| from pyspark.testing.mlutils import ( |
| DummyEvaluator, |
| DummyLogisticRegression, |
| DummyLogisticRegressionModel, |
| SparkSessionTestCase, |
| ) |
| from pyspark.ml.tests.tuning.test_tuning import ValidatorTestUtilsMixin |
| |
| |
| class CrossValidatorIOBasicTests(SparkSessionTestCase, ValidatorTestUtilsMixin): |
| def _run_test_save_load_trained_model(self, LogisticRegressionCls, LogisticRegressionModelCls): |
| # This tests saving and loading the trained model only. |
| # Save/load for CrossValidator will be added later: SPARK-13786 |
| temp_path = tempfile.mkdtemp() |
| dataset = self.spark.createDataFrame( |
| [ |
| (Vectors.dense([0.0]), 0.0), |
| (Vectors.dense([0.4]), 1.0), |
| (Vectors.dense([0.5]), 0.0), |
| (Vectors.dense([0.6]), 1.0), |
| (Vectors.dense([1.0]), 1.0), |
| ] |
| * 10, |
| ["features", "label"], |
| ) |
| lr = LogisticRegressionCls() |
| grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() |
| evaluator = BinaryClassificationEvaluator() |
| cv = CrossValidator( |
| estimator=lr, |
| estimatorParamMaps=grid, |
| evaluator=evaluator, |
| collectSubModels=True, |
| numFolds=4, |
| seed=42, |
| ) |
| cvModel = cv.fit(dataset) |
| lrModel = cvModel.bestModel |
| |
| lrModelPath = temp_path + "/lrModel" |
| lrModel.save(lrModelPath) |
| loadedLrModel = LogisticRegressionModelCls.load(lrModelPath) |
| self.assertEqual(loadedLrModel.uid, lrModel.uid) |
| self.assertEqual(loadedLrModel.intercept, lrModel.intercept) |
| |
| # SPARK-32092: Saving and then loading CrossValidatorModel should not change the params |
| cvModelPath = temp_path + "/cvModel" |
| cvModel.save(cvModelPath) |
| loadedCvModel = CrossValidatorModel.load(cvModelPath) |
| for param in [ |
| lambda x: x.getNumFolds(), |
| lambda x: x.getFoldCol(), |
| lambda x: x.getSeed(), |
| lambda x: len(x.subModels), |
| ]: |
| self.assertEqual(param(cvModel), param(loadedCvModel)) |
| |
| self.assertTrue(all(loadedCvModel.isSet(param) for param in loadedCvModel.params)) |
| |
| # mimic old version CrossValidatorModel (without stdMetrics attribute) |
| # test loading model backwards compatibility |
| cvModel2 = cvModel.copy() |
| cvModel2.stdMetrics = [] |
| cvModelPath2 = temp_path + "/cvModel2" |
| cvModel2.save(cvModelPath2) |
| loadedCvModel2 = CrossValidatorModel.load(cvModelPath2) |
| assert loadedCvModel2.stdMetrics == [] |
| |
| def test_save_load_trained_model(self): |
| self._run_test_save_load_trained_model(LogisticRegression, LogisticRegressionModel) |
| self._run_test_save_load_trained_model( |
| DummyLogisticRegression, DummyLogisticRegressionModel |
| ) |
| |
| def _run_test_save_load_simple_estimator(self, LogisticRegressionCls, evaluatorCls): |
| temp_path = tempfile.mkdtemp() |
| dataset = self.spark.createDataFrame( |
| [ |
| (Vectors.dense([0.0]), 0.0), |
| (Vectors.dense([0.4]), 1.0), |
| (Vectors.dense([0.5]), 0.0), |
| (Vectors.dense([0.6]), 1.0), |
| (Vectors.dense([1.0]), 1.0), |
| ] |
| * 10, |
| ["features", "label"], |
| ) |
| |
| lr = LogisticRegressionCls() |
| grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() |
| evaluator = evaluatorCls() |
| |
| # test save/load of CrossValidator |
| cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator) |
| cvModel = cv.fit(dataset) |
| cvPath = temp_path + "/cv" |
| cv.save(cvPath) |
| loadedCV = CrossValidator.load(cvPath) |
| self.assertEqual(loadedCV.getEstimator().uid, cv.getEstimator().uid) |
| self.assertEqual(loadedCV.getEvaluator().uid, cv.getEvaluator().uid) |
| self.assert_param_maps_equal(loadedCV.getEstimatorParamMaps(), cv.getEstimatorParamMaps()) |
| |
| # test save/load of CrossValidatorModel |
| cvModelPath = temp_path + "/cvModel" |
| cvModel.save(cvModelPath) |
| loadedModel = CrossValidatorModel.load(cvModelPath) |
| self.assertEqual(loadedModel.bestModel.uid, cvModel.bestModel.uid) |
| |
| def test_save_load_simple_estimator(self): |
| self._run_test_save_load_simple_estimator(LogisticRegression, BinaryClassificationEvaluator) |
| self._run_test_save_load_simple_estimator(DummyLogisticRegression, DummyEvaluator) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.ml.tests.tuning.test_cv_io_basic import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |