| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import sys |
| from typing import Union, TYPE_CHECKING, Optional |
| |
| from pyspark.resource.requests import ExecutorResourceRequests, TaskResourceRequests |
| from pyspark.resource import ResourceProfile |
| from pyspark.util import PythonEvalType |
| from pyspark.sql.types import StructType |
| |
| if TYPE_CHECKING: |
| from py4j.java_gateway import JavaObject |
| from pyspark.sql.dataframe import DataFrame |
| from pyspark.sql.pandas._typing import PandasMapIterFunction, ArrowMapIterFunction |
| |
| |
| class PandasMapOpsMixin: |
| """ |
| Mix-in for pandas map operations. Currently, only :class:`DataFrame` |
| can use this class. |
| """ |
| |
| def mapInPandas( |
| self, |
| func: "PandasMapIterFunction", |
| schema: Union[StructType, str], |
| barrier: bool = False, |
| profile: Optional[ResourceProfile] = None, |
| ) -> "DataFrame": |
| from pyspark.sql import DataFrame |
| from pyspark.sql.pandas.functions import pandas_udf |
| |
| assert isinstance(self, DataFrame) |
| |
| # The usage of the pandas_udf is internal so type checking is disabled. |
| udf = pandas_udf( |
| func, returnType=schema, functionType=PythonEvalType.SQL_MAP_PANDAS_ITER_UDF |
| ) # type: ignore[call-overload] |
| udf_column = udf(*[self[col] for col in self.columns]) |
| |
| jrp = self._build_java_profile(profile) |
| jdf = self._jdf.mapInPandas(udf_column._jc, barrier, jrp) |
| return DataFrame(jdf, self.sparkSession) |
| |
| def mapInArrow( |
| self, |
| func: "ArrowMapIterFunction", |
| schema: Union[StructType, str], |
| barrier: bool = False, |
| profile: Optional[ResourceProfile] = None, |
| ) -> "DataFrame": |
| from pyspark.sql import DataFrame |
| from pyspark.sql.pandas.functions import pandas_udf |
| |
| assert isinstance(self, DataFrame) |
| |
| # The usage of the pandas_udf is internal so type checking is disabled. |
| udf = pandas_udf( |
| func, returnType=schema, functionType=PythonEvalType.SQL_MAP_ARROW_ITER_UDF |
| ) # type: ignore[call-overload] |
| udf_column = udf(*[self[col] for col in self.columns]) |
| |
| jrp = self._build_java_profile(profile) |
| jdf = self._jdf.mapInArrow(udf_column._jc, barrier, jrp) |
| return DataFrame(jdf, self.sparkSession) |
| |
| def _build_java_profile( |
| self, profile: Optional[ResourceProfile] = None |
| ) -> Optional["JavaObject"]: |
| """Build the java ResourceProfile based on PySpark ResourceProfile""" |
| from pyspark.sql import DataFrame |
| |
| assert isinstance(self, DataFrame) |
| |
| jrp = None |
| if profile is not None: |
| if profile._java_resource_profile is not None: |
| jrp = profile._java_resource_profile |
| else: |
| jvm = self.sparkSession.sparkContext._jvm |
| assert jvm is not None |
| |
| builder = getattr(jvm, "org.apache.spark.resource.ResourceProfileBuilder")() |
| ereqs = ExecutorResourceRequests(jvm, profile._executor_resource_requests) |
| treqs = TaskResourceRequests(jvm, profile._task_resource_requests) |
| builder.require(ereqs._java_executor_resource_requests) |
| builder.require(treqs._java_task_resource_requests) |
| jrp = builder.build() |
| return jrp |
| |
| |
| def _test() -> None: |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.sql.pandas.map_ops |
| |
| globs = pyspark.sql.pandas.map_ops.__dict__.copy() |
| spark = ( |
| SparkSession.builder.master("local[4]").appName("sql.pandas.map_ops tests").getOrCreate() |
| ) |
| globs["spark"] = spark |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.pandas.map_ops, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF, |
| ) |
| spark.stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |