blob: bc540028eb08b08517c361cec04e9bae46700c1f [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
@generated by mypy-protobuf. Do not edit manually!
isort:skip_file
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.internal.enum_type_wrapper
import google.protobuf.message
import pyspark.sql.connect.proto.expressions_pb2
import sys
import typing
if sys.version_info >= (3, 10):
import typing as typing_extensions
else:
import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
class MlParams(google.protobuf.message.Message):
"""MlParams stores param settings for ML Estimator / Transformer / Evaluator"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
class ParamsEntry(google.protobuf.message.Message):
DESCRIPTOR: google.protobuf.descriptor.Descriptor
KEY_FIELD_NUMBER: builtins.int
VALUE_FIELD_NUMBER: builtins.int
key: builtins.str
@property
def value(self) -> pyspark.sql.connect.proto.expressions_pb2.Expression.Literal: ...
def __init__(
self,
*,
key: builtins.str = ...,
value: pyspark.sql.connect.proto.expressions_pb2.Expression.Literal | None = ...,
) -> None: ...
def HasField(
self, field_name: typing_extensions.Literal["value", b"value"]
) -> builtins.bool: ...
def ClearField(
self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]
) -> None: ...
PARAMS_FIELD_NUMBER: builtins.int
@property
def params(
self,
) -> google.protobuf.internal.containers.MessageMap[
builtins.str, pyspark.sql.connect.proto.expressions_pb2.Expression.Literal
]:
"""User-supplied params"""
def __init__(
self,
*,
params: collections.abc.Mapping[
builtins.str, pyspark.sql.connect.proto.expressions_pb2.Expression.Literal
]
| None = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["params", b"params"]) -> None: ...
global___MlParams = MlParams
class MlOperator(google.protobuf.message.Message):
"""MLOperator represents the ML operators like (Estimator, Transformer or Evaluator)"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
class _OperatorType:
ValueType = typing.NewType("ValueType", builtins.int)
V: typing_extensions.TypeAlias = ValueType
class _OperatorTypeEnumTypeWrapper(
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
MlOperator._OperatorType.ValueType
],
builtins.type,
): # noqa: F821
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
OPERATOR_TYPE_UNSPECIFIED: MlOperator._OperatorType.ValueType # 0
OPERATOR_TYPE_ESTIMATOR: MlOperator._OperatorType.ValueType # 1
"""ML estimator"""
OPERATOR_TYPE_TRANSFORMER: MlOperator._OperatorType.ValueType # 2
"""ML transformer (non-model)"""
OPERATOR_TYPE_EVALUATOR: MlOperator._OperatorType.ValueType # 3
"""ML evaluator"""
OPERATOR_TYPE_MODEL: MlOperator._OperatorType.ValueType # 4
"""ML model"""
class OperatorType(_OperatorType, metaclass=_OperatorTypeEnumTypeWrapper): ...
OPERATOR_TYPE_UNSPECIFIED: MlOperator.OperatorType.ValueType # 0
OPERATOR_TYPE_ESTIMATOR: MlOperator.OperatorType.ValueType # 1
"""ML estimator"""
OPERATOR_TYPE_TRANSFORMER: MlOperator.OperatorType.ValueType # 2
"""ML transformer (non-model)"""
OPERATOR_TYPE_EVALUATOR: MlOperator.OperatorType.ValueType # 3
"""ML evaluator"""
OPERATOR_TYPE_MODEL: MlOperator.OperatorType.ValueType # 4
"""ML model"""
NAME_FIELD_NUMBER: builtins.int
UID_FIELD_NUMBER: builtins.int
TYPE_FIELD_NUMBER: builtins.int
name: builtins.str
"""(Required) The qualified name of the ML operator."""
uid: builtins.str
"""(Required) Unique id of the ML operator"""
type: global___MlOperator.OperatorType.ValueType
"""(Required) Represents what the ML operator is"""
def __init__(
self,
*,
name: builtins.str = ...,
uid: builtins.str = ...,
type: global___MlOperator.OperatorType.ValueType = ...,
) -> None: ...
def ClearField(
self, field_name: typing_extensions.Literal["name", b"name", "type", b"type", "uid", b"uid"]
) -> None: ...
global___MlOperator = MlOperator
class ObjectRef(google.protobuf.message.Message):
"""Represents a reference to the cached object which could be a model
or summary evaluated by a model
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
ID_FIELD_NUMBER: builtins.int
id: builtins.str
"""(Required) The ID is used to lookup the object on the server side.
Note it is different from the 'uid' of a ML object.
"""
def __init__(
self,
*,
id: builtins.str = ...,
) -> None: ...
def ClearField(self, field_name: typing_extensions.Literal["id", b"id"]) -> None: ...
global___ObjectRef = ObjectRef