| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """ |
| Random Forest classification and regression using MLlib. |
| |
| Note: This example illustrates binary classification. |
| For information on multiclass classification, please refer to the decision_tree_runner.py |
| example. |
| """ |
| |
| import sys |
| |
| from pyspark.context import SparkContext |
| from pyspark.mllib.tree import RandomForest |
| from pyspark.mllib.util import MLUtils |
| |
| |
| def testClassification(trainingData, testData): |
| # Train a RandomForest model. |
| # Empty categoricalFeaturesInfo indicates all features are continuous. |
| # Note: Use larger numTrees in practice. |
| # Setting featureSubsetStrategy="auto" lets the algorithm choose. |
| model = RandomForest.trainClassifier(trainingData, numClasses=2, |
| categoricalFeaturesInfo={}, |
| numTrees=3, featureSubsetStrategy="auto", |
| impurity='gini', maxDepth=4, maxBins=32) |
| |
| # Evaluate model on test instances and compute test error |
| predictions = model.predict(testData.map(lambda x: x.features)) |
| labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) |
| testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count()\ |
| / float(testData.count()) |
| print('Test Error = ' + str(testErr)) |
| print('Learned classification forest model:') |
| print(model.toDebugString()) |
| |
| |
| def testRegression(trainingData, testData): |
| # Train a RandomForest model. |
| # Empty categoricalFeaturesInfo indicates all features are continuous. |
| # Note: Use larger numTrees in practice. |
| # Setting featureSubsetStrategy="auto" lets the algorithm choose. |
| model = RandomForest.trainRegressor(trainingData, categoricalFeaturesInfo={}, |
| numTrees=3, featureSubsetStrategy="auto", |
| impurity='variance', maxDepth=4, maxBins=32) |
| |
| # Evaluate model on test instances and compute test error |
| predictions = model.predict(testData.map(lambda x: x.features)) |
| labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) |
| testMSE = labelsAndPredictions.map(lambda (v, p): (v - p) * (v - p)).sum()\ |
| / float(testData.count()) |
| print('Test Mean Squared Error = ' + str(testMSE)) |
| print('Learned regression forest model:') |
| print(model.toDebugString()) |
| |
| |
| if __name__ == "__main__": |
| if len(sys.argv) > 1: |
| print >> sys.stderr, "Usage: random_forest_example" |
| exit(1) |
| sc = SparkContext(appName="PythonRandomForestExample") |
| |
| # Load and parse the data file into an RDD of LabeledPoint. |
| data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') |
| # Split the data into training and test sets (30% held out for testing) |
| (trainingData, testData) = data.randomSplit([0.7, 0.3]) |
| |
| print('\nRunning example of classification using RandomForest\n') |
| testClassification(trainingData, testData) |
| |
| print('\nRunning example of regression using RandomForest\n') |
| testRegression(trainingData, testData) |
| |
| sc.stop() |