| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class SeriesArgOpsMixin: |
| def test_argsort(self): |
| # Without null values |
| pser = pd.Series([0, -100, 50, 100, 20], index=["A", "B", "C", "D", "E"]) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # MultiIndex |
| pser.index = pd.MultiIndex.from_tuples( |
| [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # With name |
| pser.name = "Koalas" |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # Series from Index |
| pidx = pd.Index([4.0, -6.0, 2.0, -100.0, 11.0, 20.0, 1.0, -99.0]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq( |
| pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() |
| ) |
| self.assert_eq( |
| (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() |
| ) |
| |
| # Series from Index with name |
| pidx.name = "Koalas" |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq( |
| pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() |
| ) |
| self.assert_eq( |
| (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() |
| ) |
| |
| # Series from DataFrame |
| pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) |
| self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) |
| |
| # With null values |
| pser = pd.Series([0, -100, np.nan, 100, np.nan], index=["A", "B", "C", "D", "E"]) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # MultiIndex with null values |
| pser.index = pd.MultiIndex.from_tuples( |
| [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # With name with null values |
| pser.name = "Koalas" |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) |
| self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) |
| |
| # Series from Index with null values |
| pidx = pd.Index([4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq( |
| pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() |
| ) |
| self.assert_eq( |
| (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() |
| ) |
| |
| # Series from Index with name with null values |
| pidx.name = "Koalas" |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq( |
| pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() |
| ) |
| self.assert_eq( |
| (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() |
| ) |
| |
| # Series from DataFrame with null values |
| pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) |
| self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) |
| |
| def test_argmin_argmax(self): |
| pser = pd.Series( |
| { |
| "Corn Flakes": 100.0, |
| "Almond Delight": 110.0, |
| "Cinnamon Toast Crunch": 120.0, |
| "Cocoa Puff": 110.0, |
| "Expensive Flakes": 120.0, |
| "Cheap Flakes": 100.0, |
| }, |
| name="Koalas", |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argmin(), psser.argmin()) |
| self.assert_eq(pser.argmax(), psser.argmax()) |
| self.assert_eq(pser.argmin(skipna=False), psser.argmin(skipna=False)) |
| self.assert_eq(pser.argmax(skipna=False), psser.argmax(skipna=False)) |
| self.assert_eq(pser.argmax(skipna=False), psser.argmax(skipna=False)) |
| self.assert_eq((pser + 1).argmax(skipna=False), (psser + 1).argmax(skipna=False)) |
| self.assert_eq(pser.argmin(skipna=False), psser.argmin(skipna=False)) |
| self.assert_eq((pser + 1).argmin(skipna=False), (psser + 1).argmin(skipna=False)) |
| |
| # MultiIndex |
| pser.index = pd.MultiIndex.from_tuples( |
| [("a", "t"), ("b", "u"), ("c", "v"), ("d", "w"), ("e", "x"), ("f", "u")] |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(pser.argmin(), psser.argmin()) |
| self.assert_eq(pser.argmax(), psser.argmax()) |
| self.assert_eq(pser.argmax(skipna=False), psser.argmax(skipna=False)) |
| |
| pser2 = pd.Series([np.nan, 1.0, 2.0, np.nan]) |
| psser2 = ps.from_pandas(pser2) |
| self.assert_eq(pser2.argmin(), psser2.argmin()) |
| self.assert_eq(pser2.argmax(), psser2.argmax()) |
| self.assert_eq(pser2.argmin(skipna=False), psser2.argmin(skipna=False)) |
| self.assert_eq(pser2.argmax(skipna=False), psser2.argmax(skipna=False)) |
| |
| # Null Series |
| self.assert_eq(pd.Series([np.nan]).argmin(), ps.Series([np.nan]).argmin()) |
| self.assert_eq(pd.Series([np.nan]).argmax(), ps.Series([np.nan]).argmax()) |
| self.assert_eq( |
| pd.Series([np.nan]).argmax(skipna=False), ps.Series([np.nan]).argmax(skipna=False) |
| ) |
| |
| with self.assertRaisesRegex(ValueError, "attempt to get argmin of an empty sequence"): |
| ps.Series([]).argmin() |
| with self.assertRaisesRegex(ValueError, "attempt to get argmax of an empty sequence"): |
| ps.Series([]).argmax() |
| with self.assertRaisesRegex(ValueError, "axis can only be 0 or 'index'"): |
| psser.argmax(axis=1) |
| with self.assertRaisesRegex(ValueError, "axis can only be 0 or 'index'"): |
| psser.argmin(axis=1) |
| |
| |
| class SeriesArgOpsTests( |
| SeriesArgOpsMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.series.test_arg_ops import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |