blob: b4351fb799b3b3a6bcf8d33216f6422e0c34064e [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class FrameTruncateMixin:
def test_truncate(self):
pdf1 = pd.DataFrame(
{
"A": ["a", "b", "c", "d", "e", "f", "g"],
"B": ["h", "i", "j", "k", "l", "m", "n"],
"C": ["o", "p", "q", "r", "s", "t", "u"],
},
index=[-500, -20, -1, 0, 400, 550, 1000],
)
psdf1 = ps.from_pandas(pdf1)
pdf2 = pd.DataFrame(
{
"A": ["a", "b", "c", "d", "e", "f", "g"],
"B": ["h", "i", "j", "k", "l", "m", "n"],
"C": ["o", "p", "q", "r", "s", "t", "u"],
},
index=[1000, 550, 400, 0, -1, -20, -500],
)
psdf2 = ps.from_pandas(pdf2)
self.assert_eq(psdf1.truncate(), pdf1.truncate())
self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20))
self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400))
self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False))
self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False))
self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550))
self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False))
# axis = 1
self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1))
self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1))
self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1))
self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1))
self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1))
self.assert_eq(
psdf1.truncate("B", "C", copy=False, axis=1),
pdf1.truncate("B", "C", copy=False, axis=1),
)
# MultiIndex columns
columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "Z")])
pdf1.columns = columns
psdf1.columns = columns
pdf2.columns = columns
psdf2.columns = columns
self.assert_eq(psdf1.truncate(), pdf1.truncate())
self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20))
self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400))
self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False))
self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False))
self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550))
self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False))
# axis = 1
self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1))
self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1))
self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1))
self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1))
self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1))
self.assert_eq(
psdf1.truncate("B", "C", copy=False, axis=1),
pdf1.truncate("B", "C", copy=False, axis=1),
)
# Exceptions
psdf = ps.DataFrame(
{
"A": ["a", "b", "c", "d", "e", "f", "g"],
"B": ["h", "i", "j", "k", "l", "m", "n"],
"C": ["o", "p", "q", "r", "s", "t", "u"],
},
index=[-500, 100, 400, 0, -1, 550, -20],
)
msg = "truncate requires a sorted index"
with self.assertRaisesRegex(ValueError, msg):
psdf.truncate()
psdf = ps.DataFrame(
{
"A": ["a", "b", "c", "d", "e", "f", "g"],
"B": ["h", "i", "j", "k", "l", "m", "n"],
"C": ["o", "p", "q", "r", "s", "t", "u"],
},
index=[-500, -20, -1, 0, 400, 550, 1000],
)
msg = "Truncate: -20 must be after 400"
with self.assertRaisesRegex(ValueError, msg):
psdf.truncate(400, -20)
msg = "Truncate: B must be after C"
with self.assertRaisesRegex(ValueError, msg):
psdf.truncate("C", "B", axis=1)
class FrameTruncateTests(FrameTruncateMixin, PandasOnSparkTestCase, SQLTestUtils):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.frame.test_truncate import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)