| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark.sql import functions as sf |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| # This file contains test cases for 'Computations / Descriptive Stats' |
| # https://spark.apache.org/docs/latest/api/python/reference/pyspark.pandas/frame.html#computations-descriptive-stats |
| class FrameComputeMixin: |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, |
| index=np.random.rand(9), |
| ) |
| |
| @property |
| def df_pair(self): |
| pdf = self.pdf |
| psdf = ps.from_pandas(pdf) |
| return pdf, psdf |
| |
| def test_abs(self): |
| pdf = pd.DataFrame({"a": [-2, -1, 0, 1]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(abs(psdf), abs(pdf)) |
| self.assert_eq(np.abs(psdf), np.abs(pdf)) |
| |
| def test_clip(self): |
| pdf = pd.DataFrame( |
| {"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3) |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| # Assert list-like values are not accepted for 'lower' and 'upper' |
| msg = "List-like value are not supported for 'lower' and 'upper' at the moment" |
| with self.assertRaises(TypeError, msg=msg): |
| psdf.clip(lower=[1]) |
| with self.assertRaises(TypeError, msg=msg): |
| psdf.clip(upper=[1]) |
| |
| # Assert no lower or upper |
| self.assert_eq(psdf.clip(), pdf.clip()) |
| # Assert lower only |
| self.assert_eq(psdf.clip(1), pdf.clip(1)) |
| # Assert upper only |
| self.assert_eq(psdf.clip(upper=3), pdf.clip(upper=3)) |
| # Assert lower and upper |
| self.assert_eq(psdf.clip(1, 3), pdf.clip(1, 3)) |
| |
| pdf["clip"] = pdf.A.clip(lower=1, upper=3) |
| psdf["clip"] = psdf.A.clip(lower=1, upper=3) |
| self.assert_eq(psdf, pdf) |
| |
| # Assert behavior on string values |
| str_psdf = ps.DataFrame({"A": ["a", "b", "c"]}, index=np.random.rand(3)) |
| self.assert_eq(str_psdf.clip(1, 3), str_psdf) |
| |
| def test_mode(self): |
| pdf = pd.DataFrame( |
| { |
| "A": [1, 2, None, 4, 5, 4, 2], |
| "B": [-0.1, 0.2, -0.3, np.nan, 0.5, -0.1, -0.1], |
| "C": ["d", "b", "c", "c", "e", "a", "a"], |
| "D": [np.nan, np.nan, np.nan, np.nan, 0.1, -0.1, -0.1], |
| "E": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.mode(), pdf.mode()) |
| self.assert_eq(psdf.mode(numeric_only=True), pdf.mode(numeric_only=True)) |
| self.assert_eq(psdf.mode(dropna=False), pdf.mode(dropna=False)) |
| |
| # dataframe with single column |
| for c in ["A", "B", "C", "D", "E"]: |
| self.assert_eq(psdf[[c]].mode(), pdf[[c]].mode()) |
| |
| with self.assertRaises(ValueError): |
| psdf.mode(axis=2) |
| |
| def func(iterator): |
| for pdf in iterator: |
| if len(pdf) > 0: |
| if pdf["partition"][0] == 3: |
| yield pd.DataFrame( |
| { |
| "num": [ |
| "3", |
| "3", |
| "3", |
| "3", |
| "4", |
| ] |
| } |
| ) |
| else: |
| yield pd.DataFrame( |
| { |
| "num": [ |
| "0", |
| "1", |
| "2", |
| "3", |
| "4", |
| ] |
| } |
| ) |
| |
| df = ( |
| self.spark.range(0, 4, 1, 4) |
| .select(sf.spark_partition_id().alias("partition")) |
| .mapInPandas(func, "num string") |
| ) |
| |
| psdf = df.pandas_api() |
| self.assert_eq(psdf.mode(), psdf._to_pandas().mode()) |
| |
| def test_round(self): |
| pdf = pd.DataFrame( |
| { |
| "A": [0.028208, 0.038683, 0.877076], |
| "B": [0.992815, 0.645646, 0.149370], |
| "C": [0.173891, 0.577595, 0.491027], |
| }, |
| columns=["A", "B", "C"], |
| index=np.random.rand(3), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| pser = pd.Series([1, 0, 2], index=["A", "B", "C"]) |
| psser = ps.Series([1, 0, 2], index=["A", "B", "C"]) |
| self.assert_eq(pdf.round(2), psdf.round(2)) |
| self.assert_eq(pdf.round({"A": 1, "C": 2}), psdf.round({"A": 1, "C": 2})) |
| self.assert_eq(pdf.round({"A": 1, "D": 2}), psdf.round({"A": 1, "D": 2})) |
| self.assert_eq(pdf.round(pser), psdf.round(psser)) |
| msg = "decimals must be an integer, a dict-like or a Series" |
| with self.assertRaisesRegex(TypeError, msg): |
| psdf.round(1.5) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| pser = pd.Series([1, 0, 2], index=columns) |
| psser = ps.Series([1, 0, 2], index=columns) |
| self.assert_eq(pdf.round(2), psdf.round(2)) |
| self.assert_eq( |
| pdf.round({("X", "A"): 1, ("Y", "C"): 2}), psdf.round({("X", "A"): 1, ("Y", "C"): 2}) |
| ) |
| self.assert_eq(pdf.round({("X", "A"): 1, "Y": 2}), psdf.round({("X", "A"): 1, "Y": 2})) |
| self.assert_eq(pdf.round(pser), psdf.round(psser)) |
| |
| # non-string names |
| pdf = pd.DataFrame( |
| { |
| 10: [0.028208, 0.038683, 0.877076], |
| 20: [0.992815, 0.645646, 0.149370], |
| 30: [0.173891, 0.577595, 0.491027], |
| }, |
| index=np.random.rand(3), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(pdf.round({10: 1, 30: 2}), psdf.round({10: 1, 30: 2})) |
| |
| def test_diff(self): |
| pdf = pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, |
| index=np.random.rand(6), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(pdf.diff(), psdf.diff()) |
| self.assert_eq(pdf.diff().diff(-1), psdf.diff().diff(-1)) |
| self.assert_eq(pdf.diff().sum().astype(int), psdf.diff().sum()) |
| |
| msg = "should be an int" |
| with self.assertRaisesRegex(TypeError, msg): |
| psdf.diff(1.5) |
| msg = 'axis should be either 0 or "index" currently.' |
| with self.assertRaisesRegex(NotImplementedError, msg): |
| psdf.diff(axis=1) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(pdf.diff(), psdf.diff()) |
| |
| def test_pct_change(self): |
| pdf = pd.DataFrame( |
| {"a": [1, 2, 3, 2], "b": [4.0, 2.0, 3.0, 1.0], "c": [300, 200, 400, 200]}, |
| index=np.random.rand(4), |
| ) |
| pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.pct_change(2), pdf.pct_change(2), check_exact=False) |
| self.assert_eq(psdf.pct_change().sum(), pdf.pct_change().sum(), check_exact=False) |
| |
| def test_rank(self): |
| pdf = pd.DataFrame( |
| data={"col1": [1, 2, 3, 1], "col2": [3, 4, 3, 1]}, |
| columns=["col1", "col2"], |
| index=np.random.rand(4), |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) |
| self.assert_eq(pdf.rank().sum(), psdf.rank().sum()) |
| self.assert_eq( |
| pdf.rank(ascending=False).sort_index(), psdf.rank(ascending=False).sort_index() |
| ) |
| self.assert_eq(pdf.rank(method="min").sort_index(), psdf.rank(method="min").sort_index()) |
| self.assert_eq(pdf.rank(method="max").sort_index(), psdf.rank(method="max").sort_index()) |
| self.assert_eq( |
| pdf.rank(method="first").sort_index(), psdf.rank(method="first").sort_index() |
| ) |
| self.assert_eq( |
| pdf.rank(method="dense").sort_index(), psdf.rank(method="dense").sort_index() |
| ) |
| |
| msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'" |
| with self.assertRaisesRegex(ValueError, msg): |
| psdf.rank(method="nothing") |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("x", "col1"), ("y", "col2")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) |
| |
| # non-numeric columns |
| pdf = pd.DataFrame( |
| data={"col1": [1, 2, 3, 1], "col2": ["a", "b", "c", "d"]}, |
| index=np.random.rand(4), |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq( |
| pdf.rank(numeric_only=True).sort_index(), psdf.rank(numeric_only=True).sort_index() |
| ) |
| self.assert_eq( |
| pdf.rank(numeric_only=False).sort_index(), psdf.rank(numeric_only=False).sort_index() |
| ) |
| self.assert_eq( |
| pdf.rank(numeric_only=None).sort_index(), psdf.rank(numeric_only=None).sort_index() |
| ) |
| self.assert_eq( |
| pdf[["col2"]].rank(numeric_only=True), |
| psdf[["col2"]].rank(numeric_only=True), |
| ) |
| |
| def test_nunique(self): |
| pdf = pd.DataFrame({"A": [1, 2, 3], "B": [np.nan, 3, np.nan]}, index=np.random.rand(3)) |
| psdf = ps.from_pandas(pdf) |
| |
| # Assert NaNs are dropped by default |
| self.assert_eq(psdf.nunique(), pdf.nunique()) |
| |
| # Assert including NaN values |
| self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) |
| |
| # Assert approximate counts |
| self.assert_eq( |
| ps.DataFrame({"A": range(100)}).nunique(approx=True), |
| pd.Series([103], index=["A"]), |
| ) |
| self.assert_eq( |
| ps.DataFrame({"A": range(100)}).nunique(approx=True, rsd=0.01), |
| pd.Series([100], index=["A"]), |
| ) |
| |
| # Assert unsupported axis value yet |
| msg = 'axis should be either 0 or "index" currently.' |
| with self.assertRaisesRegex(NotImplementedError, msg): |
| psdf.nunique(axis=1) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")], names=["1", "2"]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.nunique(), pdf.nunique()) |
| self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) |
| |
| def test_quantile(self): |
| pdf, psdf = self.df_pair |
| |
| self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) |
| self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) |
| |
| self.assert_eq(psdf.loc[[]].quantile(0.5), pdf.loc[[]].quantile(0.5)) |
| self.assert_eq( |
| psdf.loc[[]].quantile([0.25, 0.5, 0.75]), pdf.loc[[]].quantile([0.25, 0.5, 0.75]) |
| ) |
| |
| with self.assertRaisesRegex( |
| NotImplementedError, 'axis should be either 0 or "index" currently.' |
| ): |
| psdf.quantile(0.5, axis=1) |
| with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): |
| psdf.quantile(accuracy="a") |
| with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): |
| psdf.quantile(q="a") |
| with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): |
| psdf.quantile(q=["a"]) |
| with self.assertRaisesRegex( |
| ValueError, r"percentiles should all be in the interval \[0, 1\]" |
| ): |
| psdf.quantile(q=[1.1]) |
| |
| self.assert_eq( |
| psdf.quantile(0.5, numeric_only=False), pdf.quantile(0.5, numeric_only=False) |
| ) |
| self.assert_eq( |
| psdf.quantile([0.25, 0.5, 0.75], numeric_only=False), |
| pdf.quantile([0.25, 0.5, 0.75], numeric_only=False), |
| ) |
| |
| # multi-index column |
| columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) |
| self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) |
| |
| pdf = pd.DataFrame({"x": ["a", "b", "c"]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.quantile(0.5, numeric_only=True), pdf.quantile(0.5, numeric_only=True)) |
| self.assert_eq( |
| psdf.quantile([0.25, 0.5, 0.75], numeric_only=True), |
| pdf.quantile([0.25, 0.5, 0.75], numeric_only=True), |
| ) |
| |
| with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): |
| psdf.quantile(0.5, numeric_only=False) |
| with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): |
| psdf.quantile([0.25, 0.5, 0.75], numeric_only=False) |
| |
| def test_product(self): |
| pdf = pd.DataFrame( |
| {"A": [1, 2, 3, 4, 5], "B": [10, 20, 30, 40, 50], "C": ["a", "b", "c", "d", "e"]} |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index()) |
| |
| # Named columns |
| pdf.columns.name = "Koalas" |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index()) |
| |
| # MultiIndex columns |
| pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index()) |
| |
| # Named MultiIndex columns |
| pdf.columns.names = ["Hello", "Koalas"] |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index()) |
| |
| # No numeric columns |
| pdf = pd.DataFrame({"key": ["a", "b", "c"], "val": ["x", "y", "z"]}) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index()) |
| |
| # No numeric named columns |
| pdf.columns.name = "Koalas" |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True) |
| |
| # No numeric MultiIndex columns |
| pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")]) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True) |
| |
| # No numeric named MultiIndex columns |
| pdf.columns.names = ["Hello", "Koalas"] |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True) |
| |
| # All NaN columns |
| pdf = pd.DataFrame( |
| { |
| "A": [np.nan, np.nan, np.nan, np.nan, np.nan], |
| "B": [10, 20, 30, 40, 50], |
| "C": ["a", "b", "c", "d", "e"], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False) |
| |
| # All NaN named columns |
| pdf.columns.name = "Koalas" |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False) |
| |
| # All NaN MultiIndex columns |
| pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False) |
| |
| # All NaN named MultiIndex columns |
| pdf.columns.names = ["Hello", "Koalas"] |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False) |
| |
| |
| class FrameComputeTests( |
| FrameComputeMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_compute import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |