blob: 043a7b9cf9d0d2bc4e1e29b68d4293bfa399dfda [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark.sql import functions as sf
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
# This file contains test cases for 'Computations / Descriptive Stats'
# https://spark.apache.org/docs/latest/api/python/reference/pyspark.pandas/frame.html#computations-descriptive-stats
class FrameComputeMixin:
@property
def pdf(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=np.random.rand(9),
)
@property
def df_pair(self):
pdf = self.pdf
psdf = ps.from_pandas(pdf)
return pdf, psdf
def test_abs(self):
pdf = pd.DataFrame({"a": [-2, -1, 0, 1]})
psdf = ps.from_pandas(pdf)
self.assert_eq(abs(psdf), abs(pdf))
self.assert_eq(np.abs(psdf), np.abs(pdf))
def test_clip(self):
pdf = pd.DataFrame(
{"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3)
)
psdf = ps.from_pandas(pdf)
# Assert list-like values are not accepted for 'lower' and 'upper'
msg = "List-like value are not supported for 'lower' and 'upper' at the moment"
with self.assertRaises(TypeError, msg=msg):
psdf.clip(lower=[1])
with self.assertRaises(TypeError, msg=msg):
psdf.clip(upper=[1])
# Assert no lower or upper
self.assert_eq(psdf.clip(), pdf.clip())
# Assert lower only
self.assert_eq(psdf.clip(1), pdf.clip(1))
# Assert upper only
self.assert_eq(psdf.clip(upper=3), pdf.clip(upper=3))
# Assert lower and upper
self.assert_eq(psdf.clip(1, 3), pdf.clip(1, 3))
pdf["clip"] = pdf.A.clip(lower=1, upper=3)
psdf["clip"] = psdf.A.clip(lower=1, upper=3)
self.assert_eq(psdf, pdf)
# Assert behavior on string values
str_psdf = ps.DataFrame({"A": ["a", "b", "c"]}, index=np.random.rand(3))
self.assert_eq(str_psdf.clip(1, 3), str_psdf)
def test_mode(self):
pdf = pd.DataFrame(
{
"A": [1, 2, None, 4, 5, 4, 2],
"B": [-0.1, 0.2, -0.3, np.nan, 0.5, -0.1, -0.1],
"C": ["d", "b", "c", "c", "e", "a", "a"],
"D": [np.nan, np.nan, np.nan, np.nan, 0.1, -0.1, -0.1],
"E": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.mode(), pdf.mode())
self.assert_eq(psdf.mode(numeric_only=True), pdf.mode(numeric_only=True))
self.assert_eq(psdf.mode(dropna=False), pdf.mode(dropna=False))
# dataframe with single column
for c in ["A", "B", "C", "D", "E"]:
self.assert_eq(psdf[[c]].mode(), pdf[[c]].mode())
with self.assertRaises(ValueError):
psdf.mode(axis=2)
def func(iterator):
for pdf in iterator:
if len(pdf) > 0:
if pdf["partition"][0] == 3:
yield pd.DataFrame(
{
"num": [
"3",
"3",
"3",
"3",
"4",
]
}
)
else:
yield pd.DataFrame(
{
"num": [
"0",
"1",
"2",
"3",
"4",
]
}
)
df = (
self.spark.range(0, 4, 1, 4)
.select(sf.spark_partition_id().alias("partition"))
.mapInPandas(func, "num string")
)
psdf = df.pandas_api()
self.assert_eq(psdf.mode(), psdf._to_pandas().mode())
def test_round(self):
pdf = pd.DataFrame(
{
"A": [0.028208, 0.038683, 0.877076],
"B": [0.992815, 0.645646, 0.149370],
"C": [0.173891, 0.577595, 0.491027],
},
columns=["A", "B", "C"],
index=np.random.rand(3),
)
psdf = ps.from_pandas(pdf)
pser = pd.Series([1, 0, 2], index=["A", "B", "C"])
psser = ps.Series([1, 0, 2], index=["A", "B", "C"])
self.assert_eq(pdf.round(2), psdf.round(2))
self.assert_eq(pdf.round({"A": 1, "C": 2}), psdf.round({"A": 1, "C": 2}))
self.assert_eq(pdf.round({"A": 1, "D": 2}), psdf.round({"A": 1, "D": 2}))
self.assert_eq(pdf.round(pser), psdf.round(psser))
msg = "decimals must be an integer, a dict-like or a Series"
with self.assertRaisesRegex(TypeError, msg):
psdf.round(1.5)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")])
pdf.columns = columns
psdf.columns = columns
pser = pd.Series([1, 0, 2], index=columns)
psser = ps.Series([1, 0, 2], index=columns)
self.assert_eq(pdf.round(2), psdf.round(2))
self.assert_eq(
pdf.round({("X", "A"): 1, ("Y", "C"): 2}), psdf.round({("X", "A"): 1, ("Y", "C"): 2})
)
self.assert_eq(pdf.round({("X", "A"): 1, "Y": 2}), psdf.round({("X", "A"): 1, "Y": 2}))
self.assert_eq(pdf.round(pser), psdf.round(psser))
# non-string names
pdf = pd.DataFrame(
{
10: [0.028208, 0.038683, 0.877076],
20: [0.992815, 0.645646, 0.149370],
30: [0.173891, 0.577595, 0.491027],
},
index=np.random.rand(3),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.round({10: 1, 30: 2}), psdf.round({10: 1, 30: 2}))
def test_diff(self):
pdf = pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]},
index=np.random.rand(6),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.diff(), psdf.diff())
self.assert_eq(pdf.diff().diff(-1), psdf.diff().diff(-1))
self.assert_eq(pdf.diff().sum().astype(int), psdf.diff().sum())
msg = "should be an int"
with self.assertRaisesRegex(TypeError, msg):
psdf.diff(1.5)
msg = 'axis should be either 0 or "index" currently.'
with self.assertRaisesRegex(NotImplementedError, msg):
psdf.diff(axis=1)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(pdf.diff(), psdf.diff())
def test_pct_change(self):
pdf = pd.DataFrame(
{"a": [1, 2, 3, 2], "b": [4.0, 2.0, 3.0, 1.0], "c": [300, 200, 400, 200]},
index=np.random.rand(4),
)
pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.pct_change(2), pdf.pct_change(2), check_exact=False)
self.assert_eq(psdf.pct_change().sum(), pdf.pct_change().sum(), check_exact=False)
def test_rank(self):
pdf = pd.DataFrame(
data={"col1": [1, 2, 3, 1], "col2": [3, 4, 3, 1]},
columns=["col1", "col2"],
index=np.random.rand(4),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index())
self.assert_eq(pdf.rank().sum(), psdf.rank().sum())
self.assert_eq(
pdf.rank(ascending=False).sort_index(), psdf.rank(ascending=False).sort_index()
)
self.assert_eq(pdf.rank(method="min").sort_index(), psdf.rank(method="min").sort_index())
self.assert_eq(pdf.rank(method="max").sort_index(), psdf.rank(method="max").sort_index())
self.assert_eq(
pdf.rank(method="first").sort_index(), psdf.rank(method="first").sort_index()
)
self.assert_eq(
pdf.rank(method="dense").sort_index(), psdf.rank(method="dense").sort_index()
)
msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'"
with self.assertRaisesRegex(ValueError, msg):
psdf.rank(method="nothing")
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "col1"), ("y", "col2")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index())
# non-numeric columns
pdf = pd.DataFrame(
data={"col1": [1, 2, 3, 1], "col2": ["a", "b", "c", "d"]},
index=np.random.rand(4),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(
pdf.rank(numeric_only=True).sort_index(), psdf.rank(numeric_only=True).sort_index()
)
self.assert_eq(
pdf.rank(numeric_only=False).sort_index(), psdf.rank(numeric_only=False).sort_index()
)
self.assert_eq(
pdf.rank(numeric_only=None).sort_index(), psdf.rank(numeric_only=None).sort_index()
)
self.assert_eq(
pdf[["col2"]].rank(numeric_only=True),
psdf[["col2"]].rank(numeric_only=True),
)
def test_nunique(self):
pdf = pd.DataFrame({"A": [1, 2, 3], "B": [np.nan, 3, np.nan]}, index=np.random.rand(3))
psdf = ps.from_pandas(pdf)
# Assert NaNs are dropped by default
self.assert_eq(psdf.nunique(), pdf.nunique())
# Assert including NaN values
self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False))
# Assert approximate counts
self.assert_eq(
ps.DataFrame({"A": range(100)}).nunique(approx=True),
pd.Series([103], index=["A"]),
)
self.assert_eq(
ps.DataFrame({"A": range(100)}).nunique(approx=True, rsd=0.01),
pd.Series([100], index=["A"]),
)
# Assert unsupported axis value yet
msg = 'axis should be either 0 or "index" currently.'
with self.assertRaisesRegex(NotImplementedError, msg):
psdf.nunique(axis=1)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")], names=["1", "2"])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(psdf.nunique(), pdf.nunique())
self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False))
def test_quantile(self):
pdf, psdf = self.df_pair
self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5))
self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75]))
self.assert_eq(psdf.loc[[]].quantile(0.5), pdf.loc[[]].quantile(0.5))
self.assert_eq(
psdf.loc[[]].quantile([0.25, 0.5, 0.75]), pdf.loc[[]].quantile([0.25, 0.5, 0.75])
)
with self.assertRaisesRegex(
NotImplementedError, 'axis should be either 0 or "index" currently.'
):
psdf.quantile(0.5, axis=1)
with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"):
psdf.quantile(accuracy="a")
with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"):
psdf.quantile(q="a")
with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"):
psdf.quantile(q=["a"])
with self.assertRaisesRegex(
ValueError, r"percentiles should all be in the interval \[0, 1\]"
):
psdf.quantile(q=[1.1])
self.assert_eq(
psdf.quantile(0.5, numeric_only=False), pdf.quantile(0.5, numeric_only=False)
)
self.assert_eq(
psdf.quantile([0.25, 0.5, 0.75], numeric_only=False),
pdf.quantile([0.25, 0.5, 0.75], numeric_only=False),
)
# multi-index column
columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5))
self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75]))
pdf = pd.DataFrame({"x": ["a", "b", "c"]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf.quantile(0.5, numeric_only=True), pdf.quantile(0.5, numeric_only=True))
self.assert_eq(
psdf.quantile([0.25, 0.5, 0.75], numeric_only=True),
pdf.quantile([0.25, 0.5, 0.75], numeric_only=True),
)
with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"):
psdf.quantile(0.5, numeric_only=False)
with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"):
psdf.quantile([0.25, 0.5, 0.75], numeric_only=False)
def test_product(self):
pdf = pd.DataFrame(
{"A": [1, 2, 3, 4, 5], "B": [10, 20, 30, 40, 50], "C": ["a", "b", "c", "d", "e"]}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index())
# Named columns
pdf.columns.name = "Koalas"
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index())
# MultiIndex columns
pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index())
# Named MultiIndex columns
pdf.columns.names = ["Hello", "Koalas"]
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index())
# No numeric columns
pdf = pd.DataFrame({"key": ["a", "b", "c"], "val": ["x", "y", "z"]})
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index())
# No numeric named columns
pdf.columns.name = "Koalas"
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True)
# No numeric MultiIndex columns
pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")])
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True)
# No numeric named MultiIndex columns
pdf.columns.names = ["Hello", "Koalas"]
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), almost=True)
# All NaN columns
pdf = pd.DataFrame(
{
"A": [np.nan, np.nan, np.nan, np.nan, np.nan],
"B": [10, 20, 30, 40, 50],
"C": ["a", "b", "c", "d", "e"],
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False)
# All NaN named columns
pdf.columns.name = "Koalas"
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False)
# All NaN MultiIndex columns
pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False)
# All NaN named MultiIndex columns
pdf.columns.names = ["Hello", "Koalas"]
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.prod(numeric_only=True), psdf.prod().sort_index(), check_exact=False)
class FrameComputeTests(
FrameComputeMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.computation.test_compute import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)