blob: fbc2b32d1c69ed6636feb17eeb11e950e183daa7 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
from typing import cast
from decimal import Decimal
from pyspark.errors import AnalysisException, PythonException
from pyspark.sql import functions as sf
from pyspark.sql.functions import udf, pandas_udf, PandasUDFType
from pyspark.sql.window import Window
from pyspark.sql.types import (
DecimalType,
IntegerType,
LongType,
FloatType,
DoubleType,
)
from pyspark.testing.sqlutils import (
ReusedSQLTestCase,
have_pandas,
have_pyarrow,
pandas_requirement_message,
pyarrow_requirement_message,
)
from pyspark.testing.utils import assertDataFrameEqual
if have_pandas:
from pandas.testing import assert_frame_equal
@unittest.skipIf(
not have_pandas or not have_pyarrow,
cast(str, pandas_requirement_message or pyarrow_requirement_message),
)
class WindowPandasUDFTestsMixin:
@property
def data(self):
return (
self.spark.range(10)
.toDF("id")
.withColumn("vs", sf.array([sf.lit(i * 1.0) + sf.col("id") for i in range(20, 30)]))
.withColumn("v", sf.explode(sf.col("vs")))
.drop("vs")
.withColumn("w", sf.lit(1.0))
)
@property
def python_plus_one(self):
@udf("double")
def plus_one(v):
assert isinstance(v, float)
return v + 1
return plus_one
@property
def pandas_scalar_time_two(self):
return pandas_udf(lambda v: v * 2, "double")
@property
def pandas_agg_count_udf(self):
@pandas_udf("long", PandasUDFType.GROUPED_AGG)
def count(v):
return len(v)
return count
@property
def pandas_agg_mean_udf(self):
@pandas_udf("double", PandasUDFType.GROUPED_AGG)
def avg(v):
return v.mean()
return avg
@property
def pandas_agg_max_udf(self):
@pandas_udf("double", PandasUDFType.GROUPED_AGG)
def max(v):
return v.max()
return max
@property
def pandas_agg_min_udf(self):
@pandas_udf("double", PandasUDFType.GROUPED_AGG)
def min(v):
return v.min()
return min
@property
def pandas_agg_weighted_mean_udf(self):
import numpy as np
@pandas_udf("double", PandasUDFType.GROUPED_AGG)
def weighted_mean(v, w):
return np.average(v, weights=w)
return weighted_mean
@property
def unbounded_window(self):
return (
Window.partitionBy("id")
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
.orderBy("v")
)
@property
def ordered_window(self):
return Window.partitionBy("id").orderBy("v")
@property
def unpartitioned_window(self):
return Window.partitionBy()
@property
def sliding_row_window(self):
return Window.partitionBy("id").orderBy("v").rowsBetween(-2, 1)
@property
def sliding_range_window(self):
return Window.partitionBy("id").orderBy("v").rangeBetween(-2, 4)
@property
def growing_row_window(self):
return Window.partitionBy("id").orderBy("v").rowsBetween(Window.unboundedPreceding, 3)
@property
def growing_range_window(self):
return Window.partitionBy("id").orderBy("v").rangeBetween(Window.unboundedPreceding, 4)
@property
def shrinking_row_window(self):
return Window.partitionBy("id").orderBy("v").rowsBetween(-2, Window.unboundedFollowing)
@property
def shrinking_range_window(self):
return Window.partitionBy("id").orderBy("v").rangeBetween(-3, Window.unboundedFollowing)
def test_simple(self):
df = self.data
w = self.unbounded_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("mean_v", mean_udf(df["v"]).over(w))
expected1 = df.withColumn("mean_v", sf.mean(df["v"]).over(w))
result2 = df.select(mean_udf(df["v"]).over(w))
expected2 = df.select(sf.mean(df["v"]).over(w))
assert_frame_equal(expected1.toPandas(), result1.toPandas())
assert_frame_equal(expected2.toPandas(), result2.toPandas())
def test_multiple_udfs(self):
df = self.data
w = self.unbounded_window
result1 = (
df.withColumn("mean_v", self.pandas_agg_mean_udf(df["v"]).over(w))
.withColumn("max_v", self.pandas_agg_max_udf(df["v"]).over(w))
.withColumn("min_w", self.pandas_agg_min_udf(df["w"]).over(w))
)
expected1 = (
df.withColumn("mean_v", sf.mean(df["v"]).over(w))
.withColumn("max_v", sf.max(df["v"]).over(w))
.withColumn("min_w", sf.min(df["w"]).over(w))
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_replace_existing(self):
df = self.data
w = self.unbounded_window
result1 = df.withColumn("v", self.pandas_agg_mean_udf(df["v"]).over(w))
expected1 = df.withColumn("v", sf.mean(df["v"]).over(w))
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_mixed_sql(self):
df = self.data
w = self.unbounded_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("v", mean_udf(df["v"] * 2).over(w) + 1)
expected1 = df.withColumn("v", sf.mean(df["v"] * 2).over(w) + 1)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_mixed_udf(self):
df = self.data
w = self.unbounded_window
plus_one = self.python_plus_one
time_two = self.pandas_scalar_time_two
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("v2", plus_one(mean_udf(plus_one(df["v"])).over(w)))
expected1 = df.withColumn("v2", plus_one(sf.mean(plus_one(df["v"])).over(w)))
result2 = df.withColumn("v2", time_two(mean_udf(time_two(df["v"])).over(w)))
expected2 = df.withColumn("v2", time_two(sf.mean(time_two(df["v"])).over(w)))
assert_frame_equal(expected1.toPandas(), result1.toPandas())
assert_frame_equal(expected2.toPandas(), result2.toPandas())
def test_without_partitionBy(self):
df = self.data
w = self.unpartitioned_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("v2", mean_udf(df["v"]).over(w))
expected1 = df.withColumn("v2", sf.mean(df["v"]).over(w))
result2 = df.select(mean_udf(df["v"]).over(w))
expected2 = df.select(sf.mean(df["v"]).over(w))
assert_frame_equal(expected1.toPandas(), result1.toPandas())
assert_frame_equal(expected2.toPandas(), result2.toPandas())
def test_mixed_sql_and_udf(self):
df = self.data
w = self.unbounded_window
ow = self.ordered_window
max_udf = self.pandas_agg_max_udf
min_udf = self.pandas_agg_min_udf
result1 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - min_udf(df["v"]).over(w))
expected1 = df.withColumn("v_diff", sf.max(df["v"]).over(w) - sf.min(df["v"]).over(w))
# Test mixing sql window function and window udf in the same expression
result2 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - sf.min(df["v"]).over(w))
expected2 = expected1
# Test chaining sql aggregate function and udf
result3 = (
df.withColumn("max_v", max_udf(df["v"]).over(w))
.withColumn("min_v", sf.min(df["v"]).over(w))
.withColumn("v_diff", sf.col("max_v") - sf.col("min_v"))
.drop("max_v", "min_v")
)
expected3 = expected1
# Test mixing sql window function and udf
result4 = df.withColumn("max_v", max_udf(df["v"]).over(w)).withColumn(
"rank", sf.rank().over(ow)
)
expected4 = df.withColumn("max_v", sf.max(df["v"]).over(w)).withColumn(
"rank", sf.rank().over(ow)
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
assert_frame_equal(expected2.toPandas(), result2.toPandas())
assert_frame_equal(expected3.toPandas(), result3.toPandas())
assert_frame_equal(expected4.toPandas(), result4.toPandas())
def test_array_type(self):
df = self.data
w = self.unbounded_window
array_udf = pandas_udf(lambda x: [1.0, 2.0], "array<double>", PandasUDFType.GROUPED_AGG)
result1 = df.withColumn("v2", array_udf(df["v"]).over(w))
self.assertEqual(result1.first()["v2"], [1.0, 2.0])
def test_invalid_args(self):
with self.quiet():
self.check_invalid_args()
def check_invalid_args(self):
df = self.data
w = self.unbounded_window
with self.assertRaisesRegex(AnalysisException, ".*not supported within a window function"):
foo_udf = pandas_udf(lambda x: x, "v double", PandasUDFType.GROUPED_MAP)
df.withColumn("v2", foo_udf(df["v"]).over(w)).schema
def test_bounded_simple(self):
df = self.data
w1 = self.sliding_row_window
w2 = self.shrinking_range_window
plus_one = self.python_plus_one
count_udf = self.pandas_agg_count_udf
mean_udf = self.pandas_agg_mean_udf
max_udf = self.pandas_agg_max_udf
min_udf = self.pandas_agg_min_udf
result1 = (
df.withColumn("mean_v", mean_udf(plus_one(df["v"])).over(w1))
.withColumn("count_v", count_udf(df["v"]).over(w2))
.withColumn("max_v", max_udf(df["v"]).over(w2))
.withColumn("min_v", min_udf(df["v"]).over(w1))
)
expected1 = (
df.withColumn("mean_v", sf.mean(plus_one(df["v"])).over(w1))
.withColumn("count_v", sf.count(df["v"]).over(w2))
.withColumn("max_v", sf.max(df["v"]).over(w2))
.withColumn("min_v", sf.min(df["v"]).over(w1))
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_growing_window(self):
df = self.data
w1 = self.growing_row_window
w2 = self.growing_range_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn(
"m2", mean_udf(df["v"]).over(w2)
)
expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn(
"m2", sf.mean(df["v"]).over(w2)
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_sliding_window(self):
df = self.data
w1 = self.sliding_row_window
w2 = self.sliding_range_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn(
"m2", mean_udf(df["v"]).over(w2)
)
expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn(
"m2", sf.mean(df["v"]).over(w2)
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_shrinking_window(self):
df = self.data
w1 = self.shrinking_row_window
w2 = self.shrinking_range_window
mean_udf = self.pandas_agg_mean_udf
result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn(
"m2", mean_udf(df["v"]).over(w2)
)
expected1 = df.withColumn("m1", sf.mean(df["v"]).over(w1)).withColumn(
"m2", sf.mean(df["v"]).over(w2)
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_bounded_mixed(self):
df = self.data
w1 = self.sliding_row_window
w2 = self.unbounded_window
mean_udf = self.pandas_agg_mean_udf
max_udf = self.pandas_agg_max_udf
result1 = (
df.withColumn("mean_v", mean_udf(df["v"]).over(w1))
.withColumn("max_v", max_udf(df["v"]).over(w2))
.withColumn("mean_unbounded_v", mean_udf(df["v"]).over(w1))
)
expected1 = (
df.withColumn("mean_v", sf.mean(df["v"]).over(w1))
.withColumn("max_v", sf.max(df["v"]).over(w2))
.withColumn("mean_unbounded_v", sf.mean(df["v"]).over(w1))
)
assert_frame_equal(expected1.toPandas(), result1.toPandas())
def test_named_arguments(self):
df = self.data
weighted_mean = self.pandas_agg_weighted_mean_udf
for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]:
for i, windowed in enumerate(
[
df.withColumn("wm", weighted_mean(df.v, w=df.w).over(w)),
df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)),
df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)),
]
):
with self.subTest(bound=bound, query_no=i):
assertDataFrameEqual(windowed, df.withColumn("wm", sf.mean(df.v).over(w)))
with self.tempView("v"):
df.createOrReplaceTempView("v")
self.spark.udf.register("weighted_mean", weighted_mean)
for w in [
"ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING",
"ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING",
]:
window_spec = f"PARTITION BY id ORDER BY v {w}"
for i, func_call in enumerate(
[
"weighted_mean(v, w => w)",
"weighted_mean(v => v, w => w)",
"weighted_mean(w => w, v => v)",
]
):
with self.subTest(window_spec=window_spec, query_no=i):
assertDataFrameEqual(
self.spark.sql(
f"SELECT id, {func_call} OVER ({window_spec}) as wm FROM v"
),
self.spark.sql(f"SELECT id, mean(v) OVER ({window_spec}) as wm FROM v"),
)
def test_named_arguments_negative(self):
df = self.data
weighted_mean = self.pandas_agg_weighted_mean_udf
with self.tempView("v"):
df.createOrReplaceTempView("v")
self.spark.udf.register("weighted_mean", weighted_mean)
base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v"
for w in [
"ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING",
"ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING",
]:
window_spec = f"PARTITION BY id ORDER BY v {w}"
with self.subTest(window_spec=window_spec):
with self.assertRaisesRegex(
AnalysisException,
"DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE",
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v => v, v => w)", window_spec=window_spec
)
).show()
with self.assertRaisesRegex(
AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT"
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v => v, w)", window_spec=window_spec
)
).show()
with self.assertRaisesRegex(
PythonException, r"weighted_mean\(\) got an unexpected keyword argument 'x'"
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v => v, x => w)", window_spec=window_spec
)
).show()
with self.assertRaisesRegex(
PythonException, r"weighted_mean\(\) got multiple values for argument 'v'"
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v, v => w)", window_spec=window_spec
)
).show()
def test_kwargs(self):
df = self.data
@pandas_udf("double", PandasUDFType.GROUPED_AGG)
def weighted_mean(**kwargs):
import numpy as np
return np.average(kwargs["v"], weights=kwargs["w"])
for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]:
for i, windowed in enumerate(
[
df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)),
df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)),
]
):
with self.subTest(bound=bound, query_no=i):
assertDataFrameEqual(windowed, df.withColumn("wm", sf.mean(df.v).over(w)))
with self.tempView("v"):
df.createOrReplaceTempView("v")
self.spark.udf.register("weighted_mean", weighted_mean)
base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v"
for w in [
"ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING",
"ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING",
]:
window_spec = f"PARTITION BY id ORDER BY v {w}"
with self.subTest(window_spec=window_spec):
for i, func_call in enumerate(
[
"weighted_mean(v => v, w => w)",
"weighted_mean(w => w, v => v)",
]
):
with self.subTest(query_no=i):
assertDataFrameEqual(
self.spark.sql(
base_sql.format(func_call=func_call, window_spec=window_spec)
),
self.spark.sql(
base_sql.format(func_call="mean(v)", window_spec=window_spec)
),
)
# negative
with self.assertRaisesRegex(
AnalysisException,
"DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE",
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v => v, v => w)", window_spec=window_spec
)
).show()
with self.assertRaisesRegex(
AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT"
):
self.spark.sql(
base_sql.format(
func_call="weighted_mean(v => v, w)", window_spec=window_spec
)
).show()
def test_arrow_cast_numeric_to_decimal(self):
import numpy as np
import pandas as pd
columns = [
"int8",
"int16",
"int32",
"uint8",
"uint16",
"uint32",
"float64",
]
pdf = pd.DataFrame({key: np.arange(1, 2).astype(key) for key in columns})
df = self.data
w = self.unbounded_window
t = DecimalType(10, 0)
for column in columns:
with self.subTest(column=column):
value = pdf[column].iloc[0]
mean_udf = pandas_udf(lambda v: value, t, PandasUDFType.GROUPED_AGG)
result = df.select(mean_udf(df["v"]).over(w)).first()[0]
assert result == Decimal("1.0")
assert type(result) == Decimal
def test_arrow_cast_str_to_numeric(self):
df = self.data
w = self.unbounded_window
for t in [IntegerType(), LongType(), FloatType(), DoubleType()]:
with self.subTest(type=t):
mean_udf = pandas_udf(lambda v: "123", t, PandasUDFType.GROUPED_AGG)
result = df.select(mean_udf(df["v"]).over(w)).first()[0]
assert result == 123
def test_arrow_batch_slicing(self):
df = self.spark.range(1000).select((sf.col("id") % 2).alias("key"), sf.col("id").alias("v"))
w1 = Window.partitionBy("key").orderBy("v")
w2 = (
Window.partitionBy("key")
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
.orderBy("v")
)
@pandas_udf("long", PandasUDFType.GROUPED_AGG)
def pandas_sum(v):
return v.sum()
@pandas_udf("long", PandasUDFType.GROUPED_AGG)
def pandas_sum_unbounded(v):
assert len(v) == 1000 / 2, len(v)
return v.sum()
expected1 = df.select("*", sf.sum("v").over(w1).alias("res")).sort("key", "v").collect()
expected2 = df.select("*", sf.sum("v").over(w2).alias("res")).sort("key", "v").collect()
for maxRecords, maxBytes in [(10, 2**31 - 1), (0, 64), (10, 64)]:
with self.subTest(maxRecords=maxRecords, maxBytes=maxBytes):
with self.sql_conf(
{
"spark.sql.execution.arrow.maxRecordsPerBatch": maxRecords,
"spark.sql.execution.arrow.maxBytesPerBatch": maxBytes,
}
):
result1 = (
df.select("*", pandas_sum("v").over(w1).alias("res"))
.sort("key", "v")
.collect()
)
self.assertEqual(expected1, result1)
result2 = (
df.select("*", pandas_sum_unbounded("v").over(w2).alias("res"))
.sort("key", "v")
.collect()
)
self.assertEqual(expected2, result2)
class WindowPandasUDFTests(WindowPandasUDFTestsMixin, ReusedSQLTestCase):
pass
if __name__ == "__main__":
from pyspark.sql.tests.pandas.test_pandas_udf_window import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)