blob: de484c9cf941c4ef4a21907d1e4e1f53b783db9e [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import inspect
import os
import sys
from typing import Dict, List, IO, Tuple
from pyspark.accumulators import _accumulatorRegistry
from pyspark.errors import PySparkRuntimeError, PySparkValueError
from pyspark.java_gateway import local_connect_and_auth
from pyspark.serializers import (
read_bool,
read_int,
write_int,
write_with_length,
SpecialLengths,
)
from pyspark.sql.types import _parse_datatype_json_string
from pyspark.sql.udtf import AnalyzeArgument, AnalyzeResult
from pyspark.util import handle_worker_exception
from pyspark.worker_util import (
check_python_version,
read_command,
pickleSer,
send_accumulator_updates,
setup_broadcasts,
setup_memory_limits,
setup_spark_files,
utf8_deserializer,
)
def read_udtf(infile: IO) -> type:
"""Reads the Python UDTF and checks if its valid or not."""
# Receive Python UDTF
handler = read_command(pickleSer, infile)
if not isinstance(handler, type):
raise PySparkRuntimeError(
f"Invalid UDTF handler type. Expected a class (type 'type'), but "
f"got an instance of {type(handler).__name__}."
)
if not hasattr(handler, "analyze") or not isinstance(
inspect.getattr_static(handler, "analyze"), staticmethod
):
raise PySparkRuntimeError(
"Failed to execute the user defined table function because it has not "
"implemented the 'analyze' static method or specified a fixed "
"return type during registration time. "
"Please add the 'analyze' static method or specify the return type, "
"and try the query again."
)
return handler
def read_arguments(infile: IO) -> Tuple[List[AnalyzeArgument], Dict[str, AnalyzeArgument]]:
"""Reads the arguments for `analyze` static method."""
# Receive arguments
num_args = read_int(infile)
args: List[AnalyzeArgument] = []
kwargs: Dict[str, AnalyzeArgument] = {}
for _ in range(num_args):
dt = _parse_datatype_json_string(utf8_deserializer.loads(infile))
if read_bool(infile): # is foldable
value = pickleSer._read_with_length(infile)
if dt.needConversion():
value = dt.fromInternal(value)
else:
value = None
is_table = read_bool(infile) # is table argument
argument = AnalyzeArgument(dataType=dt, value=value, isTable=is_table)
is_named_arg = read_bool(infile)
if is_named_arg:
name = utf8_deserializer.loads(infile)
kwargs[name] = argument
else:
args.append(argument)
return args, kwargs
def main(infile: IO, outfile: IO) -> None:
"""
Runs the Python UDTF's `analyze` static method.
This process will be invoked from `UserDefinedPythonTableFunctionAnalyzeRunner.runInPython`
in JVM and receive the Python UDTF and its arguments for the `analyze` static method,
and call the `analyze` static method, and send back a AnalyzeResult as a result of the method.
"""
try:
check_python_version(infile)
memory_limit_mb = int(os.environ.get("PYSPARK_PLANNER_MEMORY_MB", "-1"))
setup_memory_limits(memory_limit_mb)
setup_spark_files(infile)
setup_broadcasts(infile)
_accumulatorRegistry.clear()
handler = read_udtf(infile)
args, kwargs = read_arguments(infile)
result = handler.analyze(*args, **kwargs) # type: ignore[attr-defined]
if not isinstance(result, AnalyzeResult):
raise PySparkValueError(
"Output of `analyze` static method of Python UDTFs expects "
f"a pyspark.sql.udtf.AnalyzeResult but got: {type(result)}"
)
# Return the analyzed schema.
write_with_length(result.schema.json().encode("utf-8"), outfile)
# Return the pickled 'AnalyzeResult' class instance.
pickleSer._write_with_length(result, outfile)
# Return whether the "with single partition" property is requested.
write_int(1 if result.withSinglePartition else 0, outfile)
# Return the list of partitioning columns, if any.
write_int(len(result.partitionBy), outfile)
for partitioning_col in result.partitionBy:
write_with_length(partitioning_col.name.encode("utf-8"), outfile)
# Return the requested input table ordering, if any.
write_int(len(result.orderBy), outfile)
for ordering_col in result.orderBy:
write_with_length(ordering_col.name.encode("utf-8"), outfile)
write_int(1 if ordering_col.ascending else 0, outfile)
if ordering_col.overrideNullsFirst is None:
write_int(0, outfile)
elif ordering_col.overrideNullsFirst:
write_int(1, outfile)
else:
write_int(2, outfile)
except BaseException as e:
handle_worker_exception(e, outfile)
sys.exit(-1)
send_accumulator_updates(outfile)
# check end of stream
if read_int(infile) == SpecialLengths.END_OF_STREAM:
write_int(SpecialLengths.END_OF_STREAM, outfile)
else:
# write a different value to tell JVM to not reuse this worker
write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
sys.exit(-1)
if __name__ == "__main__":
# Read information about how to connect back to the JVM from the environment.
java_port = int(os.environ["PYTHON_WORKER_FACTORY_PORT"])
auth_secret = os.environ["PYTHON_WORKER_FACTORY_SECRET"]
(sock_file, _) = local_connect_and_auth(java_port, auth_secret)
main(sock_file, sock_file)