| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class SeriesSortMixin: |
| def test_sort_values(self): |
| pdf = pd.DataFrame({"x": [1, 2, 3, 4, 5, None, 7]}, index=np.random.rand(7)) |
| psdf = ps.from_pandas(pdf) |
| |
| pser = pdf.x |
| psser = psdf.x |
| |
| self.assert_eq(psser.sort_values(), pser.sort_values()) |
| self.assert_eq(psser.sort_values(ignore_index=True), pser.sort_values(ignore_index=True)) |
| self.assert_eq(psser.sort_values(ascending=False), pser.sort_values(ascending=False)) |
| self.assert_eq( |
| psser.sort_values(na_position="first"), pser.sort_values(na_position="first") |
| ) |
| |
| self.assertRaises(ValueError, lambda: psser.sort_values(na_position="invalid")) |
| |
| # inplace |
| # pandas raises an exception when the Series is derived from DataFrame |
| psser.sort_values(inplace=True) |
| self.assert_eq(psser, pser.sort_values()) |
| self.assert_eq(psdf, pdf) |
| |
| # pandas raises an exception when the Series is derived from DataFrame |
| psser.sort_values(inplace=True, ascending=False, ignore_index=True) |
| self.assert_eq(psser, pser.sort_values(ascending=False, ignore_index=True)) |
| self.assert_eq(psdf, pdf) |
| |
| pser = pdf.x.copy() |
| psser = psdf.x.copy() |
| |
| psser.sort_values(inplace=True) |
| pser.sort_values(inplace=True) |
| self.assert_eq(psser, pser) |
| self.assert_eq(psdf, pdf) |
| |
| def test_sort_index(self): |
| pdf = pd.DataFrame({"x": [2, 1, np.nan]}, index=["b", "a", np.nan]) |
| psdf = ps.from_pandas(pdf) |
| |
| pser = pdf.x |
| psser = psdf.x |
| |
| # Assert invalid parameters |
| self.assertRaises(NotImplementedError, lambda: psser.sort_index(axis=1)) |
| self.assertRaises(NotImplementedError, lambda: psser.sort_index(kind="mergesort")) |
| self.assertRaises(ValueError, lambda: psser.sort_index(na_position="invalid")) |
| |
| # Assert default behavior without parameters |
| self.assert_eq(psser.sort_index(), pser.sort_index()) |
| # Assert sorting descending |
| self.assert_eq(psser.sort_index(ascending=False), pser.sort_index(ascending=False)) |
| # Assert sorting NA indices first |
| self.assert_eq(psser.sort_index(na_position="first"), pser.sort_index(na_position="first")) |
| # Assert ignoring index |
| self.assert_eq(psser.sort_index(ignore_index=True), pser.sort_index(ignore_index=True)) |
| |
| # Assert sorting inplace |
| # pandas sorts pdf.x by the index and update the column only |
| # when the Series is derived from DataFrame. |
| psser.sort_index(inplace=True) |
| self.assert_eq(psser, pser.sort_index()) |
| self.assert_eq(psdf, pdf) |
| |
| # pandas sorts pdf.x by the index and update the column only |
| # when the Series is derived from DataFrame. |
| psser.sort_index(inplace=True, ascending=False, ignore_index=True) |
| self.assert_eq(psser, pser.sort_index(ascending=False, ignore_index=True)) |
| self.assert_eq(psdf, pdf) |
| |
| pser = pdf.x.copy() |
| psser = psdf.x.copy() |
| |
| psser.sort_index(inplace=True) |
| pser.sort_index(inplace=True) |
| self.assert_eq(psser, pser) |
| self.assert_eq(psdf, pdf) |
| |
| # Assert multi-indices |
| pser = pd.Series(range(4), index=[["b", "b", "a", "a"], [1, 0, 1, 0]], name="0") |
| psser = ps.from_pandas(pser) |
| self.assert_eq(psser.sort_index(), pser.sort_index()) |
| self.assert_eq(psser.sort_index(level=[1, 0]), pser.sort_index(level=[1, 0])) |
| |
| self.assert_eq(psser.reset_index().sort_index(), pser.reset_index().sort_index()) |
| |
| def test_searchsorted(self): |
| pser1 = pd.Series([1, 2, 2, 3]) |
| |
| index2 = pd.date_range("2018-04-09", periods=4, freq="2D") |
| pser2 = pd.Series([1, 2, 3, 4], index=index2) |
| |
| index3 = pd.MultiIndex.from_tuples( |
| [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] |
| ) |
| pser3 = pd.Series([1.0, 2.0, 3.0], index=index3, name="name") |
| |
| pser4 = pd.Series([]) |
| |
| for pser in [pser1, pser2, pser3, pser4]: |
| psser = ps.from_pandas(pser) |
| for value in [0.5, 1, 2, 3.0, 4, 5]: |
| for side in ["left", "right"]: |
| self.assert_eq( |
| pser.searchsorted(value, side=side), |
| psser.searchsorted(value, side=side), |
| ) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid side"): |
| ps.from_pandas(pser1).searchsorted(1.1, side=[1, 2]) |
| with self.assertRaisesRegex(ValueError, "Invalid side"): |
| ps.from_pandas(pser1).searchsorted(1.1, side="middle") |
| |
| |
| class SeriesSortTests( |
| SeriesSortMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.series.test_sort import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |