blob: 50217346a7ae9104d5ea14f184281f812cc65de3 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class SeriesSortMixin:
def test_sort_values(self):
pdf = pd.DataFrame({"x": [1, 2, 3, 4, 5, None, 7]}, index=np.random.rand(7))
psdf = ps.from_pandas(pdf)
pser = pdf.x
psser = psdf.x
self.assert_eq(psser.sort_values(), pser.sort_values())
self.assert_eq(psser.sort_values(ignore_index=True), pser.sort_values(ignore_index=True))
self.assert_eq(psser.sort_values(ascending=False), pser.sort_values(ascending=False))
self.assert_eq(
psser.sort_values(na_position="first"), pser.sort_values(na_position="first")
)
self.assertRaises(ValueError, lambda: psser.sort_values(na_position="invalid"))
# inplace
# pandas raises an exception when the Series is derived from DataFrame
psser.sort_values(inplace=True)
self.assert_eq(psser, pser.sort_values())
self.assert_eq(psdf, pdf)
# pandas raises an exception when the Series is derived from DataFrame
psser.sort_values(inplace=True, ascending=False, ignore_index=True)
self.assert_eq(psser, pser.sort_values(ascending=False, ignore_index=True))
self.assert_eq(psdf, pdf)
pser = pdf.x.copy()
psser = psdf.x.copy()
psser.sort_values(inplace=True)
pser.sort_values(inplace=True)
self.assert_eq(psser, pser)
self.assert_eq(psdf, pdf)
def test_sort_index(self):
pdf = pd.DataFrame({"x": [2, 1, np.nan]}, index=["b", "a", np.nan])
psdf = ps.from_pandas(pdf)
pser = pdf.x
psser = psdf.x
# Assert invalid parameters
self.assertRaises(NotImplementedError, lambda: psser.sort_index(axis=1))
self.assertRaises(NotImplementedError, lambda: psser.sort_index(kind="mergesort"))
self.assertRaises(ValueError, lambda: psser.sort_index(na_position="invalid"))
# Assert default behavior without parameters
self.assert_eq(psser.sort_index(), pser.sort_index())
# Assert sorting descending
self.assert_eq(psser.sort_index(ascending=False), pser.sort_index(ascending=False))
# Assert sorting NA indices first
self.assert_eq(psser.sort_index(na_position="first"), pser.sort_index(na_position="first"))
# Assert ignoring index
self.assert_eq(psser.sort_index(ignore_index=True), pser.sort_index(ignore_index=True))
# Assert sorting inplace
# pandas sorts pdf.x by the index and update the column only
# when the Series is derived from DataFrame.
psser.sort_index(inplace=True)
self.assert_eq(psser, pser.sort_index())
self.assert_eq(psdf, pdf)
# pandas sorts pdf.x by the index and update the column only
# when the Series is derived from DataFrame.
psser.sort_index(inplace=True, ascending=False, ignore_index=True)
self.assert_eq(psser, pser.sort_index(ascending=False, ignore_index=True))
self.assert_eq(psdf, pdf)
pser = pdf.x.copy()
psser = psdf.x.copy()
psser.sort_index(inplace=True)
pser.sort_index(inplace=True)
self.assert_eq(psser, pser)
self.assert_eq(psdf, pdf)
# Assert multi-indices
pser = pd.Series(range(4), index=[["b", "b", "a", "a"], [1, 0, 1, 0]], name="0")
psser = ps.from_pandas(pser)
self.assert_eq(psser.sort_index(), pser.sort_index())
self.assert_eq(psser.sort_index(level=[1, 0]), pser.sort_index(level=[1, 0]))
self.assert_eq(psser.reset_index().sort_index(), pser.reset_index().sort_index())
def test_searchsorted(self):
pser1 = pd.Series([1, 2, 2, 3])
index2 = pd.date_range("2018-04-09", periods=4, freq="2D")
pser2 = pd.Series([1, 2, 3, 4], index=index2)
index3 = pd.MultiIndex.from_tuples(
[("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"]
)
pser3 = pd.Series([1.0, 2.0, 3.0], index=index3, name="name")
pser4 = pd.Series([])
for pser in [pser1, pser2, pser3, pser4]:
psser = ps.from_pandas(pser)
for value in [0.5, 1, 2, 3.0, 4, 5]:
for side in ["left", "right"]:
self.assert_eq(
pser.searchsorted(value, side=side),
psser.searchsorted(value, side=side),
)
with self.assertRaisesRegex(ValueError, "Invalid side"):
ps.from_pandas(pser1).searchsorted(1.1, side=[1, 2])
with self.assertRaisesRegex(ValueError, "Invalid side"):
ps.from_pandas(pser1).searchsorted(1.1, side="middle")
class SeriesSortTests(
SeriesSortMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.series.test_sort import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)