| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| from datetime import datetime |
| |
| import numpy as np |
| import pandas as pd |
| |
| import pyspark.pandas as ps |
| from pyspark.pandas.exceptions import PandasNotImplementedError |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils, SPARK_CONF_ARROW_ENABLED |
| |
| |
| class IndexBasicMixin: |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, |
| index=[0, 1, 3, 5, 6, 8, 9, 9, 9], |
| ) |
| |
| @property |
| def psdf(self): |
| return ps.from_pandas(self.pdf) |
| |
| def test_index_basic(self): |
| for pdf in [ |
| pd.DataFrame(np.random.randn(10, 5), index=np.random.randint(100, size=10)), |
| pd.DataFrame( |
| np.random.randn(10, 5), index=np.random.randint(100, size=10).astype(np.int32) |
| ), |
| pd.DataFrame(np.random.randn(10, 5), index=np.random.randn(10)), |
| pd.DataFrame(np.random.randn(10, 5), index=np.random.randn(10).astype(np.float32)), |
| pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), |
| pd.DataFrame( |
| np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10) |
| ), |
| pd.DataFrame(np.random.randn(10, 5), index=pd.Categorical(list("abcdefghij"))), |
| pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")).set_index(["a", "b"]), |
| ]: |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.index, pdf.index) |
| self.assert_eq(psdf.index.dtype, pdf.index.dtype) |
| |
| self.assert_eq(ps.Index([])._summary(), "Index: 0 entries") |
| with self.assertRaisesRegex(ValueError, "The truth value of a Index is ambiguous."): |
| bool(ps.Index([1])) |
| with self.assertRaisesRegex(TypeError, "Index.name must be a hashable type"): |
| ps.Index([1, 2, 3], name=[(1, 2, 3)]) |
| with self.assertRaisesRegex(TypeError, "Index.name must be a hashable type"): |
| ps.Index([1.0, 2.0, 3.0], name=[(1, 2, 3)]) |
| |
| def test_multi_index_copy(self): |
| arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] |
| idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) |
| pdf = pd.DataFrame(np.random.randn(4, 5), idx) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.index.copy(), pdf.index.copy()) |
| |
| def test_holds_integer(self): |
| pidx = pd.Index([1, 2, 3, 4]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.holds_integer(), psidx.holds_integer()) |
| |
| pidx = pd.Index([1.1, 2.2, 3.3, 4.4]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.holds_integer(), psidx.holds_integer()) |
| |
| pidx = pd.Index(["A", "B", "C", "D"]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.holds_integer(), psidx.holds_integer()) |
| |
| # MultiIndex |
| pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "a")]) |
| psmidx = ps.from_pandas(pmidx) |
| self.assert_eq(pmidx.holds_integer(), psmidx.holds_integer()) |
| |
| pmidx = pd.MultiIndex.from_tuples([(10, 1), (10, 2), (20, 1)]) |
| psmidx = ps.from_pandas(pmidx) |
| self.assert_eq(pmidx.holds_integer(), psmidx.holds_integer()) |
| |
| def test_item(self): |
| pidx = pd.Index([10]) |
| psidx = ps.from_pandas(pidx) |
| |
| self.assert_eq(pidx.item(), psidx.item()) |
| |
| # with timestamp |
| pidx = pd.Index([datetime(1990, 3, 9)]) |
| psidx = ps.from_pandas(pidx) |
| |
| self.assert_eq(pidx.item(), psidx.item()) |
| |
| # MultiIndex |
| pmidx = pd.MultiIndex.from_tuples([("a", "x")]) |
| psmidx = ps.from_pandas(pmidx) |
| |
| self.assert_eq(pmidx.item(), psmidx.item()) |
| |
| # MultiIndex with timestamp |
| pmidx = pd.MultiIndex.from_tuples([(datetime(1990, 3, 9), datetime(2019, 8, 15))]) |
| psmidx = ps.from_pandas(pmidx) |
| |
| self.assert_eq(pidx.item(), psidx.item()) |
| |
| err_msg = "can only convert an array of size 1 to a Python scalar" |
| with self.assertRaisesRegex(ValueError, err_msg): |
| ps.Index([10, 20]).item() |
| with self.assertRaisesRegex(ValueError, err_msg): |
| ps.MultiIndex.from_tuples([("a", "x"), ("b", "y")]).item() |
| |
| def test_inferred_type(self): |
| # Integer |
| pidx = pd.Index([1, 2, 3]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.inferred_type, psidx.inferred_type) |
| |
| # Floating |
| pidx = pd.Index([1.0, 2.0, 3.0]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.inferred_type, psidx.inferred_type) |
| |
| # String |
| pidx = pd.Index(["a", "b", "c"]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.inferred_type, psidx.inferred_type) |
| |
| # Boolean |
| pidx = pd.Index([True, False, True, False]) |
| psidx = ps.from_pandas(pidx) |
| self.assert_eq(pidx.inferred_type, psidx.inferred_type) |
| |
| # MultiIndex |
| pmidx = pd.MultiIndex.from_tuples([("a", "x")]) |
| psmidx = ps.from_pandas(pmidx) |
| self.assert_eq(pmidx.inferred_type, psmidx.inferred_type) |
| |
| def test_view(self): |
| pidx = pd.Index([1, 2, 3, 4], name="Koalas") |
| psidx = ps.from_pandas(pidx) |
| |
| self.assert_eq(pidx.view(), psidx.view()) |
| |
| # MultiIndex |
| pmidx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) |
| psmidx = ps.from_pandas(pmidx) |
| |
| self.assert_eq(pmidx.view(), psmidx.view()) |
| |
| def test_index_ops(self): |
| pidx = pd.Index([1, 2, 3, 4, 5]) |
| psidx = ps.from_pandas(pidx) |
| |
| self.assert_eq(psidx * 100 + psidx * 10 + psidx, pidx * 100 + pidx * 10 + pidx) |
| |
| pidx = pd.Index([1, 2, 3, 4, 5], name="a") |
| psidx = ps.from_pandas(pidx) |
| |
| self.assert_eq(psidx * 100 + psidx * 10 + psidx, pidx * 100 + pidx * 10 + pidx) |
| |
| pdf = pd.DataFrame( |
| index=pd.MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6)], names=["a", "b"]) |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| pidx1 = pdf.index.get_level_values(0) |
| pidx2 = pdf.index.get_level_values(1) |
| psidx1 = psdf.index.get_level_values(0) |
| psidx2 = psdf.index.get_level_values(1) |
| |
| self.assert_eq(psidx1 * 10 + psidx2, pidx1 * 10 + pidx2) |
| |
| def test_factorize(self): |
| pidx = pd.Index(["a", "b", "a", "b"]) |
| psidx = ps.from_pandas(pidx) |
| pcodes, puniques = pidx.factorize(sort=True) |
| kcodes, kuniques = psidx.factorize() |
| self.assert_eq(pcodes.tolist(), kcodes.to_list()) |
| self.assert_eq(puniques, kuniques) |
| |
| pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) |
| psmidx = ps.from_pandas(pmidx) |
| |
| self.assertRaises(PandasNotImplementedError, lambda: psmidx.factorize()) |
| |
| |
| class IndexBasicTests( |
| IndexBasicMixin, |
| PandasOnSparkTestCase, |
| TestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.indexes.test_basic import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |