| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from typing import Any, TYPE_CHECKING |
| |
| from pyspark.ml import functions as PyMLFunctions |
| from pyspark.sql.column import Column |
| |
| |
| if TYPE_CHECKING: |
| from pyspark.sql._typing import UserDefinedFunctionLike |
| |
| |
| def vector_to_array(col: Column, dtype: str = "float64") -> Column: |
| from pyspark.sql.connect.functions.builtin import _invoke_function, _to_col, lit |
| |
| return _invoke_function("vector_to_array", _to_col(col), lit(dtype)) |
| |
| |
| vector_to_array.__doc__ = PyMLFunctions.vector_to_array.__doc__ |
| |
| |
| def array_to_vector(col: Column) -> Column: |
| from pyspark.sql.connect.functions.builtin import _invoke_function, _to_col |
| |
| return _invoke_function("array_to_vector", _to_col(col)) |
| |
| |
| array_to_vector.__doc__ = PyMLFunctions.array_to_vector.__doc__ |
| |
| |
| def predict_batch_udf(*args: Any, **kwargs: Any) -> "UserDefinedFunctionLike": |
| return PyMLFunctions.predict_batch_udf(*args, **kwargs) |
| |
| |
| predict_batch_udf.__doc__ = PyMLFunctions.predict_batch_udf.__doc__ |
| |
| |
| def _test() -> None: |
| import os |
| import sys |
| |
| if os.environ.get("PYTHON_GIL", "?") == "0": |
| print("Not supported in no-GIL mode", file=sys.stderr) |
| sys.exit(0) |
| |
| from pyspark.testing.utils import should_test_connect |
| |
| if not should_test_connect: |
| print("Skipping pyspark.ml.connect.functions doctests", file=sys.stderr) |
| sys.exit(0) |
| |
| import doctest |
| from pyspark.sql import SparkSession as PySparkSession |
| import pyspark.ml.connect.functions |
| |
| globs = pyspark.ml.connect.functions.__dict__.copy() |
| |
| globs["spark"] = ( |
| PySparkSession.builder.appName("ml.connect.functions tests") |
| .remote(os.environ.get("SPARK_CONNECT_TESTING_REMOTE", "local[4]")) |
| .getOrCreate() |
| ) |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.ml.connect.functions, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS |
| | doctest.NORMALIZE_WHITESPACE |
| | doctest.IGNORE_EXCEPTION_DETAIL, |
| ) |
| globs["spark"].stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |