| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import numpy as np |
| import pandas as pd |
| |
| try: |
| from pandas._testing import makeMissingDataframe |
| except ImportError: |
| from pandas.util.testing import makeMissingDataframe |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import option_context |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class StatsTest(PandasOnSparkTestCase, SQLTestUtils): |
| def _test_stat_functions(self, pdf_or_pser, psdf_or_psser): |
| functions = ["max", "min", "mean", "sum", "count"] |
| for funcname in functions: |
| self.assert_eq(getattr(psdf_or_psser, funcname)(), getattr(pdf_or_pser, funcname)()) |
| |
| functions = ["std", "var", "product", "sem"] |
| for funcname in functions: |
| self.assert_eq( |
| getattr(psdf_or_psser, funcname)(), |
| getattr(pdf_or_pser, funcname)(), |
| check_exact=False, |
| ) |
| |
| functions = ["std", "var", "sem"] |
| for funcname in functions: |
| self.assert_eq( |
| getattr(psdf_or_psser, funcname)(ddof=0), |
| getattr(pdf_or_pser, funcname)(ddof=0), |
| check_exact=False, |
| ) |
| |
| # NOTE: To test skew, kurt, and median, just make sure they run. |
| # The numbers are different in spark and pandas. |
| functions = ["skew", "kurt", "median"] |
| for funcname in functions: |
| getattr(psdf_or_psser, funcname)() |
| |
| def test_stat_functions(self): |
| pdf = pd.DataFrame({"A": [1, 2, 3, 4], "B": [1, 2, 3, 4], "C": [1, np.nan, 3, np.nan]}) |
| psdf = ps.from_pandas(pdf) |
| self._test_stat_functions(pdf.A, psdf.A) |
| self._test_stat_functions(pdf, psdf) |
| |
| # empty |
| self._test_stat_functions(pdf.A.loc[[]], psdf.A.loc[[]]) |
| self._test_stat_functions(pdf.loc[[]], psdf.loc[[]]) |
| |
| def test_stat_functions_multiindex_column(self): |
| arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] |
| pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) |
| psdf = ps.from_pandas(pdf) |
| self._test_stat_functions(pdf.A, psdf.A) |
| self._test_stat_functions(pdf, psdf) |
| |
| def test_stat_functions_with_no_numeric_columns(self): |
| pdf = pd.DataFrame( |
| { |
| "A": ["a", None, "c", "d", None, "f", "g"], |
| "B": ["A", "B", "C", None, "E", "F", None], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self._test_stat_functions(pdf, psdf) |
| |
| def test_sum(self): |
| pdf = pd.DataFrame({"a": [1, 2, 3, np.nan], "b": [0.1, np.nan, 0.3, np.nan]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.sum(), pdf.sum()) |
| self.assert_eq(psdf.sum(axis=1), pdf.sum(axis=1)) |
| self.assert_eq(psdf.sum(min_count=3), pdf.sum(min_count=3)) |
| self.assert_eq(psdf.sum(axis=1, min_count=1), pdf.sum(axis=1, min_count=1)) |
| self.assert_eq(psdf.loc[[]].sum(), pdf.loc[[]].sum()) |
| self.assert_eq(psdf.loc[[]].sum(min_count=1), pdf.loc[[]].sum(min_count=1)) |
| |
| self.assert_eq(psdf["a"].sum(), pdf["a"].sum()) |
| self.assert_eq(psdf["a"].sum(min_count=3), pdf["a"].sum(min_count=3)) |
| self.assert_eq(psdf["b"].sum(min_count=3), pdf["b"].sum(min_count=3)) |
| self.assert_eq(psdf["a"].loc[[]].sum(), pdf["a"].loc[[]].sum()) |
| self.assert_eq(psdf["a"].loc[[]].sum(min_count=1), pdf["a"].loc[[]].sum(min_count=1)) |
| |
| def test_product(self): |
| pdf = pd.DataFrame( |
| {"a": [1, -2, -3, np.nan], "b": [0.1, np.nan, -0.3, np.nan], "c": [10, 20, 0, -10]} |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.product(), pdf.product(), check_exact=False) |
| self.assert_eq(psdf.product(axis=1), pdf.product(axis=1)) |
| self.assert_eq(psdf.product(min_count=3), pdf.product(min_count=3), check_exact=False) |
| self.assert_eq(psdf.product(axis=1, min_count=1), pdf.product(axis=1, min_count=1)) |
| self.assert_eq(psdf.loc[[]].product(), pdf.loc[[]].product()) |
| self.assert_eq(psdf.loc[[]].product(min_count=1), pdf.loc[[]].product(min_count=1)) |
| |
| self.assert_eq(psdf["a"].product(), pdf["a"].product(), check_exact=False) |
| self.assert_eq( |
| psdf["a"].product(min_count=3), pdf["a"].product(min_count=3), check_exact=False |
| ) |
| self.assert_eq(psdf["b"].product(min_count=3), pdf["b"].product(min_count=3)) |
| self.assert_eq(psdf["c"].product(min_count=3), pdf["c"].product(min_count=3)) |
| self.assert_eq(psdf["a"].loc[[]].product(), pdf["a"].loc[[]].product()) |
| self.assert_eq( |
| psdf["a"].loc[[]].product(min_count=1), pdf["a"].loc[[]].product(min_count=1) |
| ) |
| |
| def test_abs(self): |
| pdf = pd.DataFrame( |
| { |
| "A": [1, -2, np.nan, -4, 5], |
| "B": [1.0, -2, np.nan, -4, 5], |
| "C": [-6.0, -7, -8, np.nan, 10], |
| "D": ["a", "b", "c", "d", np.nan], |
| "E": [True, np.nan, False, True, True], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.A.abs(), pdf.A.abs()) |
| self.assert_eq(psdf.B.abs(), pdf.B.abs()) |
| self.assert_eq(psdf.E.abs(), pdf.E.abs()) |
| # pandas' bug? |
| # self.assert_eq(psdf[["B", "C", "E"]].abs(), pdf[["B", "C", "E"]].abs()) |
| self.assert_eq(psdf[["B", "C"]].abs(), pdf[["B", "C"]].abs()) |
| self.assert_eq(psdf[["E"]].abs(), pdf[["E"]].abs()) |
| |
| with self.assertRaisesRegex( |
| TypeError, "bad operand type for abs\\(\\): object \\(string\\)" |
| ): |
| psdf.abs() |
| with self.assertRaisesRegex( |
| TypeError, "bad operand type for abs\\(\\): object \\(string\\)" |
| ): |
| psdf.D.abs() |
| |
| def test_axis_on_dataframe(self): |
| # The number of each count is intentionally big |
| # because when data is small, it executes a shortcut. |
| # Less than 'compute.shortcut_limit' will execute a shortcut |
| # by using collected pandas dataframe directly. |
| # now we set the 'compute.shortcut_limit' as 1000 explicitly |
| with option_context("compute.shortcut_limit", 1000): |
| pdf = pd.DataFrame( |
| { |
| "A": [1, -2, 3, -4, 5] * 300, |
| "B": [1.0, -2, 3, -4, 5] * 300, |
| "C": [-6.0, -7, -8, -9, 10] * 300, |
| "D": [True, False, True, False, False] * 300, |
| }, |
| index=range(10, 15001, 10), |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.count(axis=1), pdf.count(axis=1)) |
| self.assert_eq(psdf.var(axis=1), pdf.var(axis=1)) |
| self.assert_eq(psdf.var(axis=1, ddof=0), pdf.var(axis=1, ddof=0)) |
| self.assert_eq(psdf.std(axis=1), pdf.std(axis=1)) |
| self.assert_eq(psdf.std(axis=1, ddof=0), pdf.std(axis=1, ddof=0)) |
| self.assert_eq(psdf.max(axis=1), pdf.max(axis=1)) |
| self.assert_eq(psdf.min(axis=1), pdf.min(axis=1)) |
| self.assert_eq(psdf.sum(axis=1), pdf.sum(axis=1)) |
| self.assert_eq(psdf.product(axis=1), pdf.product(axis=1)) |
| self.assert_eq(psdf.kurtosis(axis=0), pdf.kurtosis(axis=0), almost=True) |
| self.assert_eq(psdf.kurtosis(axis=1), pdf.kurtosis(axis=1)) |
| self.assert_eq(psdf.skew(axis=0), pdf.skew(axis=0), almost=True) |
| self.assert_eq(psdf.skew(axis=1), pdf.skew(axis=1)) |
| self.assert_eq(psdf.mean(axis=1), pdf.mean(axis=1)) |
| self.assert_eq(psdf.sem(axis=1), pdf.sem(axis=1)) |
| self.assert_eq(psdf.sem(axis=1, ddof=0), pdf.sem(axis=1, ddof=0)) |
| |
| self.assert_eq( |
| psdf.count(axis=1, numeric_only=True), pdf.count(axis=1, numeric_only=True) |
| ) |
| self.assert_eq(psdf.var(axis=1, numeric_only=True), pdf.var(axis=1, numeric_only=True)) |
| self.assert_eq( |
| psdf.var(axis=1, ddof=0, numeric_only=True), |
| pdf.var(axis=1, ddof=0, numeric_only=True), |
| ) |
| self.assert_eq(psdf.std(axis=1, numeric_only=True), pdf.std(axis=1, numeric_only=True)) |
| self.assert_eq( |
| psdf.std(axis=1, ddof=0, numeric_only=True), |
| pdf.std(axis=1, ddof=0, numeric_only=True), |
| ) |
| self.assert_eq( |
| psdf.max(axis=1, numeric_only=True), |
| pdf.max(axis=1, numeric_only=True).astype(float), |
| ) |
| self.assert_eq( |
| psdf.min(axis=1, numeric_only=True), |
| pdf.min(axis=1, numeric_only=True).astype(float), |
| ) |
| self.assert_eq( |
| psdf.sum(axis=1, numeric_only=True), |
| pdf.sum(axis=1, numeric_only=True).astype(float), |
| ) |
| self.assert_eq( |
| psdf.product(axis=1, numeric_only=True), |
| pdf.product(axis=1, numeric_only=True).astype(float), |
| ) |
| self.assert_eq( |
| psdf.kurtosis(axis=0, numeric_only=True), |
| pdf.kurtosis(axis=0, numeric_only=True), |
| almost=True, |
| ) |
| self.assert_eq( |
| psdf.kurtosis(axis=1, numeric_only=True), pdf.kurtosis(axis=1, numeric_only=True) |
| ) |
| self.assert_eq( |
| psdf.skew(axis=0, numeric_only=True), |
| pdf.skew(axis=0, numeric_only=True), |
| almost=True, |
| ) |
| self.assert_eq( |
| psdf.skew(axis=1, numeric_only=True), pdf.skew(axis=1, numeric_only=True) |
| ) |
| self.assert_eq( |
| psdf.mean(axis=1, numeric_only=True), pdf.mean(axis=1, numeric_only=True) |
| ) |
| self.assert_eq(psdf.sem(axis=1, numeric_only=True), pdf.sem(axis=1, numeric_only=True)) |
| self.assert_eq( |
| psdf.sem(axis=1, ddof=0, numeric_only=True), |
| pdf.sem(axis=1, ddof=0, numeric_only=True), |
| ) |
| |
| def test_skew_kurt_numerical_stability(self): |
| pdf = pd.DataFrame( |
| { |
| "A": [1, 1, 1, 1, 1], |
| "B": [1.0, np.nan, 4, 2, 5], |
| "C": [-6.0, -7, np.nan, np.nan, 10], |
| "D": [1.2, np.nan, np.nan, 9.8, np.nan], |
| "E": [1, np.nan, np.nan, np.nan, np.nan], |
| "F": [np.nan, np.nan, np.nan, np.nan, np.nan], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.skew(), pdf.skew(), almost=True) |
| self.assert_eq(psdf.kurt(), pdf.kurt(), almost=True) |
| |
| def test_dataframe_corr(self): |
| pdf = makeMissingDataframe(0.3, 42) |
| psdf = ps.from_pandas(pdf) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid method"): |
| psdf.corr("std") |
| with self.assertRaisesRegex(TypeError, "Invalid min_periods type"): |
| psdf.corr(min_periods="3") |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| (psdf + 1).corr(method=method, min_periods=2), |
| (pdf + 1).corr(method=method, min_periods=2), |
| check_exact=False, |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| (psdf + 1).corr(method=method, min_periods=2), |
| (pdf + 1).corr(method=method, min_periods=2), |
| check_exact=False, |
| ) |
| |
| # test with identical values |
| pdf = pd.DataFrame( |
| { |
| "a": [0, 1, 1, 1, 0], |
| "b": [2, 2, -1, 1, np.nan], |
| "c": [3, 3, 3, 3, 3], |
| "d": [np.nan, np.nan, np.nan, np.nan, np.nan], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| |
| def test_series_corr(self): |
| pdf = makeMissingDataframe(0.3, 42) |
| pser1 = pdf.A |
| pser2 = pdf.B |
| psdf = ps.from_pandas(pdf) |
| psser1 = psdf.A |
| psser2 = psdf.B |
| |
| with self.assertRaisesRegex(ValueError, "Invalid method"): |
| psser1.corr(psser2, method="std") |
| with self.assertRaisesRegex(TypeError, "Invalid min_periods type"): |
| psser1.corr(psser2, min_periods="3") |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq( |
| psser1.corr(psser2, method=method), |
| pser1.corr(pser2, method=method), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=1), |
| pser1.corr(pser2, method=method, min_periods=1), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=3), |
| pser1.corr(pser2, method=method, min_periods=3), |
| almost=True, |
| ) |
| self.assert_eq( |
| (psser1 + 1).corr(psser2 - 2, method=method, min_periods=2), |
| (pser1 + 1).corr(pser2 - 2, method=method, min_periods=2), |
| almost=True, |
| ) |
| |
| # different anchors |
| psser1 = ps.from_pandas(pser1) |
| psser2 = ps.from_pandas(pser2) |
| |
| with self.assertRaisesRegex(ValueError, "Cannot combine the series or dataframe"): |
| psser1.corr(psser2) |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| with ps.option_context("compute.ops_on_diff_frames", True): |
| self.assert_eq( |
| psser1.corr(psser2, method=method), |
| pser1.corr(pser2, method=method), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=1), |
| pser1.corr(pser2, method=method, min_periods=1), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=3), |
| pser1.corr(pser2, method=method, min_periods=3), |
| almost=True, |
| ) |
| self.assert_eq( |
| (psser1 + 1).corr(psser2 - 2, method=method, min_periods=2), |
| (pser1 + 1).corr(pser2 - 2, method=method, min_periods=2), |
| almost=True, |
| ) |
| |
| def test_cov_corr_meta(self): |
| # Disable arrow execution since corr() is using UDT internally which is not supported. |
| with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): |
| pdf = pd.DataFrame( |
| { |
| "a": np.array([1, 2, 3], dtype="i1"), |
| "b": np.array([1, 2, 3], dtype="i2"), |
| "c": np.array([1, 2, 3], dtype="i4"), |
| "d": np.array([1, 2, 3]), |
| "e": np.array([1.0, 2.0, 3.0], dtype="f4"), |
| "f": np.array([1.0, 2.0, 3.0]), |
| "g": np.array([True, False, True]), |
| "h": np.array(list("abc")), |
| }, |
| index=pd.Index([1, 2, 3], name="myindex"), |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.corr(), pdf.corr(), check_exact=False) |
| |
| def test_stats_on_boolean_dataframe(self): |
| pdf = pd.DataFrame({"A": [True, False, True], "B": [False, False, True]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.min(), pdf.min()) |
| self.assert_eq(psdf.max(), pdf.max()) |
| self.assert_eq(psdf.count(), pdf.count()) |
| |
| self.assert_eq(psdf.sum(), pdf.sum()) |
| self.assert_eq(psdf.product(), pdf.product()) |
| self.assert_eq(psdf.mean(), pdf.mean()) |
| |
| self.assert_eq(psdf.var(), pdf.var(), check_exact=False) |
| self.assert_eq(psdf.var(ddof=0), pdf.var(ddof=0), check_exact=False) |
| self.assert_eq(psdf.std(), pdf.std(), check_exact=False) |
| self.assert_eq(psdf.std(ddof=0), pdf.std(ddof=0), check_exact=False) |
| self.assert_eq(psdf.sem(), pdf.sem(), check_exact=False) |
| self.assert_eq(psdf.sem(ddof=0), pdf.sem(ddof=0), check_exact=False) |
| |
| def test_stats_on_boolean_series(self): |
| pser = pd.Series([True, False, True]) |
| psser = ps.from_pandas(pser) |
| |
| self.assert_eq(psser.min(), pser.min()) |
| self.assert_eq(psser.max(), pser.max()) |
| self.assert_eq(psser.count(), pser.count()) |
| |
| self.assert_eq(psser.sum(), pser.sum()) |
| self.assert_eq(psser.product(), pser.product()) |
| self.assert_eq(psser.mean(), pser.mean()) |
| |
| self.assert_eq(psser.var(), pser.var(), almost=True) |
| self.assert_eq(psser.var(ddof=0), pser.var(ddof=0), almost=True) |
| self.assert_eq(psser.var(ddof=2), pser.var(ddof=2), almost=True) |
| self.assert_eq(psser.std(), pser.std(), almost=True) |
| self.assert_eq(psser.std(ddof=0), pser.std(ddof=0), almost=True) |
| self.assert_eq(psser.std(ddof=2), pser.std(ddof=2), almost=True) |
| self.assert_eq(psser.sem(), pser.sem(), almost=True) |
| self.assert_eq(psser.sem(ddof=0), pser.sem(ddof=0), almost=True) |
| self.assert_eq(psser.sem(ddof=2), pser.sem(ddof=2), almost=True) |
| |
| def test_stats_on_non_numeric_columns_should_be_discarded_if_numeric_only_is_true(self): |
| pdf = pd.DataFrame({"i": [0, 1, 2], "b": [False, False, True], "s": ["x", "y", "z"]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq( |
| psdf[["i", "s"]].max(numeric_only=True), pdf[["i", "s"]].max(numeric_only=True) |
| ) |
| self.assert_eq( |
| psdf[["b", "s"]].max(numeric_only=True), pdf[["b", "s"]].max(numeric_only=True) |
| ) |
| self.assert_eq( |
| psdf[["i", "s"]].min(numeric_only=True), pdf[["i", "s"]].min(numeric_only=True) |
| ) |
| self.assert_eq( |
| psdf[["b", "s"]].min(numeric_only=True), pdf[["b", "s"]].min(numeric_only=True) |
| ) |
| self.assert_eq(psdf.count(numeric_only=True), pdf.count(numeric_only=True)) |
| |
| self.assert_eq(psdf.sum(numeric_only=True), pdf.sum(numeric_only=True)) |
| self.assert_eq(psdf.product(numeric_only=True), pdf.product(numeric_only=True)) |
| |
| self.assert_eq(psdf.mean(numeric_only=True), pdf.mean(numeric_only=True)) |
| |
| self.assert_eq(psdf.var(numeric_only=True), pdf.var(numeric_only=True), check_exact=False) |
| self.assert_eq( |
| psdf.var(ddof=0, numeric_only=True), |
| pdf.var(ddof=0, numeric_only=True), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.var(ddof=2, numeric_only=True), |
| pdf.var(ddof=2, numeric_only=True), |
| check_exact=False, |
| ) |
| self.assert_eq(psdf.std(numeric_only=True), pdf.std(numeric_only=True), check_exact=False) |
| self.assert_eq( |
| psdf.std(ddof=0, numeric_only=True), |
| pdf.std(ddof=0, numeric_only=True), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.std(ddof=2, numeric_only=True), |
| pdf.std(ddof=2, numeric_only=True), |
| check_exact=False, |
| ) |
| self.assert_eq(psdf.sem(numeric_only=True), pdf.sem(numeric_only=True), check_exact=False) |
| self.assert_eq( |
| psdf.sem(ddof=0, numeric_only=True), |
| pdf.sem(ddof=0, numeric_only=True), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.sem(ddof=2, numeric_only=True), |
| pdf.sem(ddof=2, numeric_only=True), |
| check_exact=False, |
| ) |
| |
| self.assert_eq(len(psdf.median(numeric_only=True)), len(pdf.median(numeric_only=True))) |
| self.assert_eq(len(psdf.kurtosis(numeric_only=True)), len(pdf.kurtosis(numeric_only=True))) |
| self.assert_eq(len(psdf.skew(numeric_only=True)), len(pdf.skew(numeric_only=True))) |
| |
| # Boolean was excluded because of a behavior change in NumPy |
| # https://github.com/numpy/numpy/pull/16273#discussion_r641264085 which pandas inherits |
| # but this behavior is inconsistent in pandas context. |
| # Boolean column in quantile tests are excluded for now. |
| # TODO(SPARK-35555): track and match the behavior of quantile to pandas' |
| pdf = pd.DataFrame({"i": [0, 1, 2], "s": ["x", "y", "z"]}) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq( |
| len(psdf.quantile(q=0.5, numeric_only=True)), |
| len(pdf.quantile(q=0.5, numeric_only=True)), |
| ) |
| self.assert_eq( |
| len(psdf.quantile(q=[0.25, 0.5, 0.75], numeric_only=True)), |
| len(pdf.quantile(q=[0.25, 0.5, 0.75], numeric_only=True)), |
| ) |
| |
| def test_numeric_only_unsupported(self): |
| pdf = pd.DataFrame({"i": [0, 1, 2], "b": [False, False, True], "s": ["x", "y", "z"]}) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.sum(numeric_only=True), pdf.sum(numeric_only=True)) |
| self.assert_eq( |
| psdf[["i", "b"]].sum(numeric_only=False), pdf[["i", "b"]].sum(numeric_only=False) |
| ) |
| |
| with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): |
| psdf.sum(numeric_only=False) |
| |
| with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): |
| psdf.s.sum() |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.test_stats import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |