| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from distutils.version import LooseVersion |
| |
| import numpy as np |
| import pandas as pd |
| |
| import pyspark.pandas as ps |
| from pyspark.pandas.window import Expanding |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils |
| |
| |
| class ExpandingTest(PandasOnSparkTestCase, TestUtils): |
| def _test_expanding_func(self, ps_func, pd_func=None): |
| if not pd_func: |
| pd_func = ps_func |
| if isinstance(pd_func, str): |
| pd_func = self.convert_str_to_lambda(pd_func) |
| if isinstance(ps_func, str): |
| ps_func = self.convert_str_to_lambda(ps_func) |
| pser = pd.Series([1, 2, 3, 7, 9, 8], index=np.random.rand(6), name="a") |
| psser = ps.from_pandas(pser) |
| self.assert_eq(ps_func(psser.expanding(2)), pd_func(pser.expanding(2)), almost=True) |
| self.assert_eq(ps_func(psser.expanding(2)), pd_func(pser.expanding(2)), almost=True) |
| |
| # Multiindex |
| pser = pd.Series( |
| [1, 2, 3], index=pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq(ps_func(psser.expanding(2)), pd_func(pser.expanding(2))) |
| |
| pdf = pd.DataFrame( |
| {"a": [1.0, 2.0, 3.0, 2.0], "b": [4.0, 2.0, 3.0, 1.0]}, index=np.random.rand(4) |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(ps_func(psdf.expanding(2)), pd_func(pdf.expanding(2))) |
| self.assert_eq(ps_func(psdf.expanding(2)).sum(), pd_func(pdf.expanding(2)).sum()) |
| |
| # Multiindex column |
| columns = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| self.assert_eq(ps_func(psdf.expanding(2)), pd_func(pdf.expanding(2))) |
| |
| def test_expanding_error(self): |
| with self.assertRaisesRegex(ValueError, "min_periods must be >= 0"): |
| ps.range(10).expanding(-1) |
| |
| with self.assertRaisesRegex( |
| TypeError, "psdf_or_psser must be a series or dataframe; however, got:.*int" |
| ): |
| Expanding(1, 2) |
| |
| def test_expanding_repr(self): |
| self.assertEqual(repr(ps.range(10).expanding(5)), "Expanding [min_periods=5]") |
| |
| def test_expanding_count(self): |
| self._test_expanding_func("count") |
| |
| def test_expanding_min(self): |
| self._test_expanding_func("min") |
| |
| def test_expanding_max(self): |
| self._test_expanding_func("max") |
| |
| def test_expanding_mean(self): |
| self._test_expanding_func("mean") |
| |
| def test_expanding_quantile(self): |
| self._test_expanding_func(lambda x: x.quantile(0.5), lambda x: x.quantile(0.5, "lower")) |
| |
| def test_expanding_sum(self): |
| self._test_expanding_func("sum") |
| |
| def test_expanding_std(self): |
| self._test_expanding_func("std") |
| |
| def test_expanding_var(self): |
| self._test_expanding_func("var") |
| |
| def test_expanding_skew(self): |
| self._test_expanding_func("skew") |
| |
| def test_expanding_kurt(self): |
| self._test_expanding_func("kurt") |
| |
| def _test_groupby_expanding_func(self, ps_func, pd_func=None): |
| if not pd_func: |
| pd_func = ps_func |
| if isinstance(pd_func, str): |
| pd_func = self.convert_str_to_lambda(pd_func) |
| if isinstance(ps_func, str): |
| ps_func = self.convert_str_to_lambda(ps_func) |
| pser = pd.Series([1, 2, 3, 2], index=np.random.rand(4), name="a") |
| psser = ps.from_pandas(pser) |
| self.assert_eq( |
| ps_func(psser.groupby(psser).expanding(2)).sort_index(), |
| pd_func(pser.groupby(pser).expanding(2)).sort_index(), |
| ) |
| self.assert_eq( |
| ps_func(psser.groupby(psser).expanding(2)).sum(), |
| pd_func(pser.groupby(pser).expanding(2)).sum(), |
| ) |
| |
| # Multiindex |
| pser = pd.Series( |
| [1, 2, 3, 2], |
| index=pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z"), ("c", "z")]), |
| name="a", |
| ) |
| psser = ps.from_pandas(pser) |
| self.assert_eq( |
| ps_func(psser.groupby(psser).expanding(2)).sort_index(), |
| pd_func(pser.groupby(pser).expanding(2)).sort_index(), |
| ) |
| |
| pdf = pd.DataFrame({"a": [1.0, 2.0, 3.0, 2.0], "b": [4.0, 2.0, 3.0, 1.0]}) |
| psdf = ps.from_pandas(pdf) |
| |
| # The behavior of GroupBy.expanding is changed from pandas 1.3. |
| if LooseVersion(pd.__version__) >= LooseVersion("1.3"): |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a).expanding(2)).sort_index(), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a).expanding(2)).sum(), |
| pd_func(pdf.groupby(pdf.a).expanding(2)).sum(), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a + 1).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a + 1).expanding(2)).sort_index(), |
| ) |
| else: |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a).expanding(2)).drop("a", axis=1).sort_index(), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a).expanding(2)).sum(), |
| pd_func(pdf.groupby(pdf.a).expanding(2)).sum().drop("a"), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a + 1).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a + 1).expanding(2)).drop("a", axis=1).sort_index(), |
| ) |
| |
| self.assert_eq( |
| ps_func(psdf.b.groupby(psdf.a).expanding(2)).sort_index(), |
| pd_func(pdf.b.groupby(pdf.a).expanding(2)).sort_index(), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a)["b"].expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a)["b"].expanding(2)).sort_index(), |
| ) |
| self.assert_eq( |
| ps_func(psdf.groupby(psdf.a)[["b"]].expanding(2)).sort_index(), |
| pd_func(pdf.groupby(pdf.a)[["b"]].expanding(2)).sort_index(), |
| ) |
| |
| # Multiindex column |
| columns = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| # The behavior of GroupBy.expanding is changed from pandas 1.3. |
| if LooseVersion(pd.__version__) >= LooseVersion("1.3"): |
| self.assert_eq( |
| ps_func(psdf.groupby(("a", "x")).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(("a", "x")).expanding(2)).sort_index(), |
| ) |
| |
| self.assert_eq( |
| ps_func(psdf.groupby([("a", "x"), ("a", "y")]).expanding(2)).sort_index(), |
| pd_func(pdf.groupby([("a", "x"), ("a", "y")]).expanding(2)).sort_index(), |
| ) |
| else: |
| self.assert_eq( |
| ps_func(psdf.groupby(("a", "x")).expanding(2)).sort_index(), |
| pd_func(pdf.groupby(("a", "x")).expanding(2)).drop(("a", "x"), axis=1).sort_index(), |
| ) |
| |
| self.assert_eq( |
| ps_func(psdf.groupby([("a", "x"), ("a", "y")]).expanding(2)).sort_index(), |
| pd_func(pdf.groupby([("a", "x"), ("a", "y")]).expanding(2)) |
| .drop([("a", "x"), ("a", "y")], axis=1) |
| .sort_index(), |
| ) |
| |
| def test_groupby_expanding_count(self): |
| self._test_groupby_expanding_func("count") |
| |
| def test_groupby_expanding_min(self): |
| self._test_groupby_expanding_func("min") |
| |
| def test_groupby_expanding_max(self): |
| self._test_groupby_expanding_func("max") |
| |
| def test_groupby_expanding_mean(self): |
| self._test_groupby_expanding_func("mean") |
| |
| def test_groupby_expanding_quantile(self): |
| self._test_groupby_expanding_func( |
| lambda x: x.quantile(0.5), lambda x: x.quantile(0.5, "lower") |
| ) |
| |
| def test_groupby_expanding_sum(self): |
| self._test_groupby_expanding_func("sum") |
| |
| def test_groupby_expanding_std(self): |
| self._test_groupby_expanding_func("std") |
| |
| def test_groupby_expanding_var(self): |
| self._test_groupby_expanding_func("var") |
| |
| def test_groupby_expanding_skew(self): |
| self._test_groupby_expanding_func("skew") |
| |
| def test_groupby_expanding_kurt(self): |
| self._test_groupby_expanding_func("kurt") |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.test_expanding import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |