| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import json |
| import warnings |
| from typing import ( |
| cast, |
| overload, |
| Any, |
| Callable, |
| Iterable, |
| List, |
| Optional, |
| Tuple, |
| TYPE_CHECKING, |
| Union, |
| ) |
| |
| from py4j.java_gateway import JavaObject, JVMView |
| |
| from pyspark import copy_func |
| from pyspark.context import SparkContext |
| from pyspark.errors import PySparkTypeError |
| from pyspark.sql.types import DataType |
| from pyspark.sql.utils import get_active_spark_context |
| |
| if TYPE_CHECKING: |
| from pyspark.sql._typing import ColumnOrName, LiteralType, DecimalLiteral, DateTimeLiteral |
| from pyspark.sql.window import WindowSpec |
| |
| __all__ = ["Column"] |
| |
| |
| def _create_column_from_literal(literal: Union["LiteralType", "DecimalLiteral"]) -> "Column": |
| sc = get_active_spark_context() |
| return cast(JVMView, sc._jvm).functions.lit(literal) |
| |
| |
| def _create_column_from_name(name: str) -> "Column": |
| sc = get_active_spark_context() |
| return cast(JVMView, sc._jvm).functions.col(name) |
| |
| |
| def _to_java_column(col: "ColumnOrName") -> JavaObject: |
| if isinstance(col, Column): |
| jcol = col._jc |
| elif isinstance(col, str): |
| jcol = _create_column_from_name(col) |
| else: |
| raise TypeError( |
| "Invalid argument, not a string or column: " |
| "{0} of type {1}. " |
| "For column literals, use 'lit', 'array', 'struct' or 'create_map' " |
| "function.".format(col, type(col)) |
| ) |
| return jcol |
| |
| |
| def _to_seq( |
| sc: SparkContext, |
| cols: Iterable["ColumnOrName"], |
| converter: Optional[Callable[["ColumnOrName"], JavaObject]] = None, |
| ) -> JavaObject: |
| """ |
| Convert a list of Columns (or names) into a JVM Seq of Column. |
| |
| An optional `converter` could be used to convert items in `cols` |
| into JVM Column objects. |
| """ |
| if converter: |
| cols = [converter(c) for c in cols] |
| assert sc._jvm is not None |
| return sc._jvm.PythonUtils.toSeq(cols) |
| |
| |
| def _to_list( |
| sc: SparkContext, |
| cols: List["ColumnOrName"], |
| converter: Optional[Callable[["ColumnOrName"], JavaObject]] = None, |
| ) -> JavaObject: |
| """ |
| Convert a list of Columns (or names) into a JVM (Scala) List of Columns. |
| |
| An optional `converter` could be used to convert items in `cols` |
| into JVM Column objects. |
| """ |
| if converter: |
| cols = [converter(c) for c in cols] |
| assert sc._jvm is not None |
| return sc._jvm.PythonUtils.toList(cols) |
| |
| |
| def _unary_op( |
| name: str, |
| doc: str = "unary operator", |
| ) -> Callable[["Column"], "Column"]: |
| """Create a method for given unary operator""" |
| |
| def _(self: "Column") -> "Column": |
| jc = getattr(self._jc, name)() |
| return Column(jc) |
| |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _func_op(name: str, doc: str = "") -> Callable[["Column"], "Column"]: |
| def _(self: "Column") -> "Column": |
| sc = get_active_spark_context() |
| jc = getattr(cast(JVMView, sc._jvm).functions, name)(self._jc) |
| return Column(jc) |
| |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _bin_func_op( |
| name: str, |
| reverse: bool = False, |
| doc: str = "binary function", |
| ) -> Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"]: |
| def _(self: "Column", other: Union["Column", "LiteralType", "DecimalLiteral"]) -> "Column": |
| sc = get_active_spark_context() |
| fn = getattr(cast(JVMView, sc._jvm).functions, name) |
| jc = other._jc if isinstance(other, Column) else _create_column_from_literal(other) |
| njc = fn(self._jc, jc) if not reverse else fn(jc, self._jc) |
| return Column(njc) |
| |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _bin_op( |
| name: str, |
| doc: str = "binary operator", |
| ) -> Callable[ |
| ["Column", Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"]], "Column" |
| ]: |
| """Create a method for given binary operator""" |
| |
| def _( |
| self: "Column", |
| other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], |
| ) -> "Column": |
| jc = other._jc if isinstance(other, Column) else other |
| njc = getattr(self._jc, name)(jc) |
| return Column(njc) |
| |
| _.__doc__ = doc |
| return _ |
| |
| |
| def _reverse_op( |
| name: str, |
| doc: str = "binary operator", |
| ) -> Callable[["Column", Union["LiteralType", "DecimalLiteral"]], "Column"]: |
| """Create a method for binary operator (this object is on right side)""" |
| |
| def _(self: "Column", other: Union["LiteralType", "DecimalLiteral"]) -> "Column": |
| jother = _create_column_from_literal(other) |
| jc = getattr(jother, name)(self._jc) |
| return Column(jc) |
| |
| _.__doc__ = doc |
| return _ |
| |
| |
| class Column: |
| |
| """ |
| A column in a DataFrame. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| Column instances can be created by |
| |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| |
| Select a column out of a DataFrame |
| >>> df.name |
| Column<'name'> |
| >>> df["name"] |
| Column<'name'> |
| |
| Create from an expression |
| |
| >>> df.age + 1 |
| Column<...> |
| >>> 1 / df.age |
| Column<...> |
| """ |
| |
| def __init__(self, jc: JavaObject) -> None: |
| self._jc = jc |
| |
| # arithmetic operators |
| __neg__ = _func_op("negate") |
| __add__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("plus"), |
| ) |
| __sub__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("minus"), |
| ) |
| __mul__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("multiply"), |
| ) |
| __div__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("divide"), |
| ) |
| __truediv__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("divide"), |
| ) |
| __mod__ = cast( |
| Callable[["Column", Union["Column", "LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_op("mod"), |
| ) |
| __radd__ = cast( |
| Callable[["Column", Union["LiteralType", "DecimalLiteral"]], "Column"], _bin_op("plus") |
| ) |
| __rsub__ = _reverse_op("minus") |
| __rmul__ = cast( |
| Callable[["Column", Union["LiteralType", "DecimalLiteral"]], "Column"], _bin_op("multiply") |
| ) |
| __rdiv__ = _reverse_op("divide") |
| __rtruediv__ = _reverse_op("divide") |
| __rmod__ = _reverse_op("mod") |
| |
| __pow__ = _bin_func_op("pow") |
| __rpow__ = cast( |
| Callable[["Column", Union["LiteralType", "DecimalLiteral"]], "Column"], |
| _bin_func_op("pow", reverse=True), |
| ) |
| |
| # logistic operators |
| def __eq__( # type: ignore[override] |
| self, |
| other: Union["Column", "LiteralType", "DecimalLiteral", "DateTimeLiteral"], |
| ) -> "Column": |
| """binary function""" |
| return _bin_op("equalTo")(self, other) |
| |
| def __ne__( # type: ignore[override] |
| self, |
| other: Any, |
| ) -> "Column": |
| """binary function""" |
| return _bin_op("notEqual")(self, other) |
| |
| __lt__ = _bin_op("lt") |
| __le__ = _bin_op("leq") |
| __ge__ = _bin_op("geq") |
| __gt__ = _bin_op("gt") |
| |
| _eqNullSafe_doc = """ |
| Equality test that is safe for null values. |
| |
| .. versionadded:: 2.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other |
| a value or :class:`Column` |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df1 = spark.createDataFrame([ |
| ... Row(id=1, value='foo'), |
| ... Row(id=2, value=None) |
| ... ]) |
| >>> df1.select( |
| ... df1['value'] == 'foo', |
| ... df1['value'].eqNullSafe('foo'), |
| ... df1['value'].eqNullSafe(None) |
| ... ).show() |
| +-------------+---------------+----------------+ |
| |(value = foo)|(value <=> foo)|(value <=> NULL)| |
| +-------------+---------------+----------------+ |
| | true| true| false| |
| | null| false| true| |
| +-------------+---------------+----------------+ |
| >>> df2 = spark.createDataFrame([ |
| ... Row(value = 'bar'), |
| ... Row(value = None) |
| ... ]) |
| >>> df1.join(df2, df1["value"] == df2["value"]).count() |
| 0 |
| >>> df1.join(df2, df1["value"].eqNullSafe(df2["value"])).count() |
| 1 |
| >>> df2 = spark.createDataFrame([ |
| ... Row(id=1, value=float('NaN')), |
| ... Row(id=2, value=42.0), |
| ... Row(id=3, value=None) |
| ... ]) |
| >>> df2.select( |
| ... df2['value'].eqNullSafe(None), |
| ... df2['value'].eqNullSafe(float('NaN')), |
| ... df2['value'].eqNullSafe(42.0) |
| ... ).show() |
| +----------------+---------------+----------------+ |
| |(value <=> NULL)|(value <=> NaN)|(value <=> 42.0)| |
| +----------------+---------------+----------------+ |
| | false| true| false| |
| | false| false| true| |
| | true| false| false| |
| +----------------+---------------+----------------+ |
| |
| Notes |
| ----- |
| Unlike Pandas, PySpark doesn't consider NaN values to be NULL. See the |
| `NaN Semantics <https://spark.apache.org/docs/latest/sql-ref-datatypes.html#nan-semantics>`_ |
| for details. |
| """ |
| eqNullSafe = _bin_op("eqNullSafe", _eqNullSafe_doc) |
| |
| # `and`, `or`, `not` cannot be overloaded in Python, |
| # so use bitwise operators as boolean operators |
| __and__ = _bin_op("and") |
| __or__ = _bin_op("or") |
| __invert__ = _func_op("not") |
| __rand__ = _bin_op("and") |
| __ror__ = _bin_op("or") |
| |
| # container operators |
| def __contains__(self, item: Any) -> None: |
| raise ValueError( |
| "Cannot apply 'in' operator against a column: please use 'contains' " |
| "in a string column or 'array_contains' function for an array column." |
| ) |
| |
| # bitwise operators |
| _bitwiseOR_doc = """ |
| Compute bitwise OR of this expression with another expression. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other |
| a value or :class:`Column` to calculate bitwise or(|) with |
| this :class:`Column`. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(a=170, b=75)]) |
| >>> df.select(df.a.bitwiseOR(df.b)).collect() |
| [Row((a | b)=235)] |
| """ |
| _bitwiseAND_doc = """ |
| Compute bitwise AND of this expression with another expression. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other |
| a value or :class:`Column` to calculate bitwise and(&) with |
| this :class:`Column`. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(a=170, b=75)]) |
| >>> df.select(df.a.bitwiseAND(df.b)).collect() |
| [Row((a & b)=10)] |
| """ |
| _bitwiseXOR_doc = """ |
| Compute bitwise XOR of this expression with another expression. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other |
| a value or :class:`Column` to calculate bitwise xor(^) with |
| this :class:`Column`. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(a=170, b=75)]) |
| >>> df.select(df.a.bitwiseXOR(df.b)).collect() |
| [Row((a ^ b)=225)] |
| """ |
| |
| bitwiseOR = _bin_op("bitwiseOR", _bitwiseOR_doc) |
| bitwiseAND = _bin_op("bitwiseAND", _bitwiseAND_doc) |
| bitwiseXOR = _bin_op("bitwiseXOR", _bitwiseXOR_doc) |
| |
| def getItem(self, key: Any) -> "Column": |
| """ |
| An expression that gets an item at position ``ordinal`` out of a list, |
| or gets an item by key out of a dict. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| key |
| a literal value, or a :class:`Column` expression. |
| The result will only be true at a location if the item matches in the column. |
| |
| .. deprecated:: 3.0.0 |
| :class:`Column` as a parameter is deprecated. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing the item(s) got at position out of a list or by key out of a dict. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame([([1, 2], {"key": "value"})], ["l", "d"]) |
| >>> df.select(df.l.getItem(0), df.d.getItem("key")).show() |
| +----+------+ |
| |l[0]|d[key]| |
| +----+------+ |
| | 1| value| |
| +----+------+ |
| """ |
| if isinstance(key, Column): |
| warnings.warn( |
| "A column as 'key' in getItem is deprecated as of Spark 3.0, and will not " |
| "be supported in the future release. Use `column[key]` or `column.key` syntax " |
| "instead.", |
| FutureWarning, |
| ) |
| return self[key] |
| |
| def getField(self, name: Any) -> "Column": |
| """ |
| An expression that gets a field by name in a :class:`StructType`. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| name |
| a literal value, or a :class:`Column` expression. |
| The result will only be true at a location if the field matches in the Column. |
| |
| .. deprecated:: 3.0.0 |
| :class:`Column` as a parameter is deprecated. |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column got by name. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(r=Row(a=1, b="b"))]) |
| >>> df.select(df.r.getField("b")).show() |
| +---+ |
| |r.b| |
| +---+ |
| | b| |
| +---+ |
| >>> df.select(df.r.a).show() |
| +---+ |
| |r.a| |
| +---+ |
| | 1| |
| +---+ |
| """ |
| if isinstance(name, Column): |
| warnings.warn( |
| "A column as 'name' in getField is deprecated as of Spark 3.0, and will not " |
| "be supported in the future release. Use `column[name]` or `column.name` syntax " |
| "instead.", |
| FutureWarning, |
| ) |
| return self[name] |
| |
| def withField(self, fieldName: str, col: "Column") -> "Column": |
| """ |
| An expression that adds/replaces a field in :class:`StructType` by name. |
| |
| .. versionadded:: 3.1.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| fieldName : str |
| a literal value. |
| The result will only be true at a location if any field matches in the Column. |
| col : :class:`Column` |
| A :class:`Column` expression for the column with `fieldName`. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column |
| which field was added/replaced by fieldName. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> from pyspark.sql.functions import lit |
| >>> df = spark.createDataFrame([Row(a=Row(b=1, c=2))]) |
| >>> df.withColumn('a', df['a'].withField('b', lit(3))).select('a.b').show() |
| +---+ |
| | b| |
| +---+ |
| | 3| |
| +---+ |
| >>> df.withColumn('a', df['a'].withField('d', lit(4))).select('a.d').show() |
| +---+ |
| | d| |
| +---+ |
| | 4| |
| +---+ |
| """ |
| if not isinstance(fieldName, str): |
| raise PySparkTypeError( |
| error_class="NOT_STR", |
| message_parameters={"arg_name": "fieldName", "arg_type": type(fieldName).__name__}, |
| ) |
| |
| if not isinstance(col, Column): |
| raise PySparkTypeError( |
| error_class="NOT_COLUMN", |
| message_parameters={"arg_name": "col", "arg_type": type(col).__name__}, |
| ) |
| |
| return Column(self._jc.withField(fieldName, col._jc)) |
| |
| def dropFields(self, *fieldNames: str) -> "Column": |
| """ |
| An expression that drops fields in :class:`StructType` by name. |
| This is a no-op if the schema doesn't contain field name(s). |
| |
| .. versionadded:: 3.1.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| fieldNames : str |
| Desired field names (collects all positional arguments passed) |
| The result will drop at a location if any field matches in the Column. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column with field dropped by fieldName. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> from pyspark.sql.functions import col, lit |
| >>> df = spark.createDataFrame([ |
| ... Row(a=Row(b=1, c=2, d=3, e=Row(f=4, g=5, h=6)))]) |
| >>> df.withColumn('a', df['a'].dropFields('b')).show() |
| +-----------------+ |
| | a| |
| +-----------------+ |
| |{2, 3, {4, 5, 6}}| |
| +-----------------+ |
| |
| >>> df.withColumn('a', df['a'].dropFields('b', 'c')).show() |
| +--------------+ |
| | a| |
| +--------------+ |
| |{3, {4, 5, 6}}| |
| +--------------+ |
| |
| This method supports dropping multiple nested fields directly e.g. |
| |
| >>> df.withColumn("a", col("a").dropFields("e.g", "e.h")).show() |
| +--------------+ |
| | a| |
| +--------------+ |
| |{1, 2, 3, {4}}| |
| +--------------+ |
| |
| However, if you are going to add/replace multiple nested fields, |
| it is preferred to extract out the nested struct before |
| adding/replacing multiple fields e.g. |
| |
| >>> df.select(col("a").withField( |
| ... "e", col("a.e").dropFields("g", "h")).alias("a") |
| ... ).show() |
| +--------------+ |
| | a| |
| +--------------+ |
| |{1, 2, 3, {4}}| |
| +--------------+ |
| |
| """ |
| sc = get_active_spark_context() |
| jc = self._jc.dropFields(_to_seq(sc, fieldNames)) |
| return Column(jc) |
| |
| def __getattr__(self, item: Any) -> "Column": |
| """ |
| An expression that gets an item at position ``ordinal`` out of a list, |
| or gets an item by key out of a dict. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| item |
| a literal value. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing the item got by key out of a dict. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) |
| >>> df.select(df.d.key).show() |
| +------+ |
| |d[key]| |
| +------+ |
| | value| |
| +------+ |
| """ |
| if item.startswith("__"): |
| raise AttributeError(item) |
| return self[item] |
| |
| def __getitem__(self, k: Any) -> "Column": |
| """ |
| An expression that gets an item at position ``ordinal`` out of a list, |
| or gets an item by key out of a dict. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| k |
| a literal value, or a slice object without step. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing the item got by key out of a dict, or substrings sliced by |
| the given slice object. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame([('abcedfg', {"key": "value"})], ["l", "d"]) |
| >>> df.select(df.l[slice(1, 3)], df.d['key']).show() |
| +------------------+------+ |
| |substring(l, 1, 3)|d[key]| |
| +------------------+------+ |
| | abc| value| |
| +------------------+------+ |
| """ |
| if isinstance(k, slice): |
| if k.step is not None: |
| raise ValueError("slice with step is not supported.") |
| return self.substr(k.start, k.stop) |
| else: |
| return _bin_op("apply")(self, k) |
| |
| def __iter__(self) -> None: |
| raise TypeError("Column is not iterable") |
| |
| # string methods |
| _contains_doc = """ |
| Contains the other element. Returns a boolean :class:`Column` based on a string match. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other |
| string in line. A value as a literal or a :class:`Column`. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.contains('o')).collect() |
| [Row(age=5, name='Bob')] |
| """ |
| _startswith_doc = """ |
| String starts with. Returns a boolean :class:`Column` based on a string match. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other : :class:`Column` or str |
| string at start of line (do not use a regex `^`) |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.startswith('Al')).collect() |
| [Row(age=2, name='Alice')] |
| >>> df.filter(df.name.startswith('^Al')).collect() |
| [] |
| """ |
| _endswith_doc = """ |
| String ends with. Returns a boolean :class:`Column` based on a string match. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other : :class:`Column` or str |
| string at end of line (do not use a regex `$`) |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.endswith('ice')).collect() |
| [Row(age=2, name='Alice')] |
| >>> df.filter(df.name.endswith('ice$')).collect() |
| [] |
| """ |
| |
| contains = _bin_op("contains", _contains_doc) |
| startswith = _bin_op("startsWith", _startswith_doc) |
| endswith = _bin_op("endsWith", _endswith_doc) |
| |
| def like(self: "Column", other: str) -> "Column": |
| """ |
| SQL like expression. Returns a boolean :class:`Column` based on a SQL LIKE match. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other : str |
| a SQL LIKE pattern |
| |
| See Also |
| -------- |
| pyspark.sql.Column.rlike |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column of booleans showing whether each element |
| in the Column is matched by SQL LIKE pattern. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.like('Al%')).collect() |
| [Row(age=2, name='Alice')] |
| """ |
| njc = getattr(self._jc, "like")(other) |
| return Column(njc) |
| |
| def rlike(self: "Column", other: str) -> "Column": |
| """ |
| SQL RLIKE expression (LIKE with Regex). Returns a boolean :class:`Column` based on a regex |
| match. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other : str |
| an extended regex expression |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column of booleans showing whether each element |
| in the Column is matched by extended regex expression. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.rlike('ice$')).collect() |
| [Row(age=2, name='Alice')] |
| """ |
| njc = getattr(self._jc, "rlike")(other) |
| return Column(njc) |
| |
| def ilike(self: "Column", other: str) -> "Column": |
| """ |
| SQL ILIKE expression (case insensitive LIKE). Returns a boolean :class:`Column` |
| based on a case insensitive match. |
| |
| .. versionadded:: 3.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| other : str |
| a SQL LIKE pattern |
| |
| See Also |
| -------- |
| pyspark.sql.Column.rlike |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column of booleans showing whether each element |
| in the Column is matched by SQL LIKE pattern. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.filter(df.name.ilike('%Ice')).collect() |
| [Row(age=2, name='Alice')] |
| """ |
| njc = getattr(self._jc, "ilike")(other) |
| return Column(njc) |
| |
| @overload |
| def substr(self, startPos: int, length: int) -> "Column": |
| ... |
| |
| @overload |
| def substr(self, startPos: "Column", length: "Column") -> "Column": |
| ... |
| |
| def substr(self, startPos: Union[int, "Column"], length: Union[int, "Column"]) -> "Column": |
| """ |
| Return a :class:`Column` which is a substring of the column. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| startPos : :class:`Column` or int |
| start position |
| length : :class:`Column` or int |
| length of the substring |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column is substr of origin Column. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.name.substr(1, 3).alias("col")).collect() |
| [Row(col='Ali'), Row(col='Bob')] |
| """ |
| if type(startPos) != type(length): |
| raise PySparkTypeError( |
| error_class="NOT_SAME_TYPE", |
| message_parameters={ |
| "arg_name1": "startPos", |
| "arg_name2": "length", |
| "arg_type1": type(startPos).__name__, |
| "arg_type2": type(length).__name__, |
| }, |
| ) |
| if isinstance(startPos, int): |
| jc = self._jc.substr(startPos, length) |
| elif isinstance(startPos, Column): |
| jc = self._jc.substr(startPos._jc, cast("Column", length)._jc) |
| else: |
| raise TypeError("Unexpected type: %s" % type(startPos)) |
| return Column(jc) |
| |
| def isin(self, *cols: Any) -> "Column": |
| """ |
| A boolean expression that is evaluated to true if the value of this |
| expression is contained by the evaluated values of the arguments. |
| |
| .. versionadded:: 1.5.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| cols |
| The result will only be true at a location if any value matches in the Column. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column of booleans showing whether each element in the Column is contained in cols. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df[df.name.isin("Bob", "Mike")].collect() |
| [Row(age=5, name='Bob')] |
| >>> df[df.age.isin([1, 2, 3])].collect() |
| [Row(age=2, name='Alice')] |
| """ |
| if len(cols) == 1 and isinstance(cols[0], (list, set)): |
| cols = cast(Tuple, cols[0]) |
| cols = cast( |
| Tuple, |
| [c._jc if isinstance(c, Column) else _create_column_from_literal(c) for c in cols], |
| ) |
| sc = get_active_spark_context() |
| jc = getattr(self._jc, "isin")(_to_seq(sc, cols)) |
| return Column(jc) |
| |
| # order |
| _asc_doc = """ |
| Returns a sort expression based on the ascending order of the column. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.asc()).collect() |
| [Row(name='Alice'), Row(name='Tom')] |
| """ |
| _asc_nulls_first_doc = """ |
| Returns a sort expression based on ascending order of the column, and null values |
| return before non-null values. |
| |
| .. versionadded:: 2.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.asc_nulls_first()).collect() |
| [Row(name=None), Row(name='Alice'), Row(name='Tom')] |
| |
| """ |
| _asc_nulls_last_doc = """ |
| Returns a sort expression based on ascending order of the column, and null values |
| appear after non-null values. |
| |
| .. versionadded:: 2.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.asc_nulls_last()).collect() |
| [Row(name='Alice'), Row(name='Tom'), Row(name=None)] |
| |
| """ |
| _desc_doc = """ |
| Returns a sort expression based on the descending order of the column. |
| |
| .. versionadded:: 2.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.desc()).collect() |
| [Row(name='Tom'), Row(name='Alice')] |
| """ |
| _desc_nulls_first_doc = """ |
| Returns a sort expression based on the descending order of the column, and null values |
| appear before non-null values. |
| |
| .. versionadded:: 2.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.desc_nulls_first()).collect() |
| [Row(name=None), Row(name='Tom'), Row(name='Alice')] |
| |
| """ |
| _desc_nulls_last_doc = """ |
| Returns a sort expression based on the descending order of the column, and null values |
| appear after non-null values. |
| |
| .. versionadded:: 2.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([('Tom', 80), (None, 60), ('Alice', None)], ["name", "height"]) |
| >>> df.select(df.name).orderBy(df.name.desc_nulls_last()).collect() |
| [Row(name='Tom'), Row(name='Alice'), Row(name=None)] |
| """ |
| |
| asc = _unary_op("asc", _asc_doc) |
| asc_nulls_first = _unary_op("asc_nulls_first", _asc_nulls_first_doc) |
| asc_nulls_last = _unary_op("asc_nulls_last", _asc_nulls_last_doc) |
| desc = _unary_op("desc", _desc_doc) |
| desc_nulls_first = _unary_op("desc_nulls_first", _desc_nulls_first_doc) |
| desc_nulls_last = _unary_op("desc_nulls_last", _desc_nulls_last_doc) |
| |
| _isNull_doc = """ |
| True if the current expression is null. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)]) |
| >>> df.filter(df.height.isNull()).collect() |
| [Row(name='Alice', height=None)] |
| """ |
| _isNotNull_doc = """ |
| True if the current expression is NOT null. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)]) |
| >>> df.filter(df.height.isNotNull()).collect() |
| [Row(name='Tom', height=80)] |
| """ |
| |
| isNull = _unary_op("isNull", _isNull_doc) |
| isNotNull = _unary_op("isNotNull", _isNotNull_doc) |
| |
| def alias(self, *alias: str, **kwargs: Any) -> "Column": |
| """ |
| Returns this column aliased with a new name or names (in the case of expressions that |
| return more than one column, such as explode). |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| alias : str |
| desired column names (collects all positional arguments passed) |
| |
| Other Parameters |
| ---------------- |
| metadata: dict |
| a dict of information to be stored in ``metadata`` attribute of the |
| corresponding :class:`StructField <pyspark.sql.types.StructField>` (optional, keyword |
| only argument) |
| |
| .. versionchanged:: 2.2.0 |
| Added optional ``metadata`` argument. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column is aliased with new name or names. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.age.alias("age2")).collect() |
| [Row(age2=2), Row(age2=5)] |
| >>> df.select(df.age.alias("age3", metadata={'max': 99})).schema['age3'].metadata['max'] |
| 99 |
| """ |
| |
| metadata = kwargs.pop("metadata", None) |
| assert not kwargs, "Unexpected kwargs where passed: %s" % kwargs |
| |
| sc = get_active_spark_context() |
| if len(alias) == 1: |
| if metadata: |
| assert sc._jvm is not None |
| jmeta = sc._jvm.org.apache.spark.sql.types.Metadata.fromJson(json.dumps(metadata)) |
| return Column(getattr(self._jc, "as")(alias[0], jmeta)) |
| else: |
| return Column(getattr(self._jc, "as")(alias[0])) |
| else: |
| if metadata: |
| raise ValueError("metadata can only be provided for a single column") |
| return Column(getattr(self._jc, "as")(_to_seq(sc, list(alias)))) |
| |
| name = copy_func(alias, sinceversion=2.0, doc=":func:`name` is an alias for :func:`alias`.") |
| |
| def cast(self, dataType: Union[DataType, str]) -> "Column": |
| """ |
| Casts the column into type ``dataType``. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| dataType : :class:`DataType` or str |
| a DataType or Python string literal with a DDL-formatted string |
| to use when parsing the column to the same type. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column is cast into new type. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql.types import StringType |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.age.cast("string").alias('ages')).collect() |
| [Row(ages='2'), Row(ages='5')] |
| >>> df.select(df.age.cast(StringType()).alias('ages')).collect() |
| [Row(ages='2'), Row(ages='5')] |
| """ |
| if isinstance(dataType, str): |
| jc = self._jc.cast(dataType) |
| elif isinstance(dataType, DataType): |
| from pyspark.sql import SparkSession |
| |
| spark = SparkSession._getActiveSessionOrCreate() |
| jdt = spark._jsparkSession.parseDataType(dataType.json()) |
| jc = self._jc.cast(jdt) |
| else: |
| raise TypeError("unexpected type: %s" % type(dataType)) |
| return Column(jc) |
| |
| astype = copy_func(cast, sinceversion=1.4, doc=":func:`astype` is an alias for :func:`cast`.") |
| |
| def between( |
| self, |
| lowerBound: Union["Column", "LiteralType", "DateTimeLiteral", "DecimalLiteral"], |
| upperBound: Union["Column", "LiteralType", "DateTimeLiteral", "DecimalLiteral"], |
| ) -> "Column": |
| """ |
| True if the current column is between the lower bound and upper bound, inclusive. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| lowerBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal |
| a boolean expression that boundary start, inclusive. |
| upperBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal |
| a boolean expression that boundary end, inclusive. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column of booleans showing whether each element of Column |
| is between left and right (inclusive). |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.name, df.age.between(2, 4)).show() |
| +-----+---------------------------+ |
| | name|((age >= 2) AND (age <= 4))| |
| +-----+---------------------------+ |
| |Alice| true| |
| | Bob| false| |
| +-----+---------------------------+ |
| """ |
| return (self >= lowerBound) & (self <= upperBound) |
| |
| def when(self, condition: "Column", value: Any) -> "Column": |
| """ |
| Evaluates a list of conditions and returns one of multiple possible result expressions. |
| If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. |
| |
| .. versionadded:: 1.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| condition : :class:`Column` |
| a boolean :class:`Column` expression. |
| value |
| a literal value, or a :class:`Column` expression. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column is in conditions. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import functions as F |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.name, F.when(df.age > 4, 1).when(df.age < 3, -1).otherwise(0)).show() |
| +-----+------------------------------------------------------------+ |
| | name|CASE WHEN (age > 4) THEN 1 WHEN (age < 3) THEN -1 ELSE 0 END| |
| +-----+------------------------------------------------------------+ |
| |Alice| -1| |
| | Bob| 1| |
| +-----+------------------------------------------------------------+ |
| |
| See Also |
| -------- |
| pyspark.sql.functions.when |
| """ |
| if not isinstance(condition, Column): |
| raise TypeError("condition should be a Column") |
| v = value._jc if isinstance(value, Column) else value |
| jc = self._jc.when(condition._jc, v) |
| return Column(jc) |
| |
| def otherwise(self, value: Any) -> "Column": |
| """ |
| Evaluates a list of conditions and returns one of multiple possible result expressions. |
| If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. |
| |
| .. versionadded:: 1.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| value |
| a literal value, or a :class:`Column` expression. |
| |
| Returns |
| ------- |
| :class:`Column` |
| Column representing whether each element of Column is unmatched conditions. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import functions as F |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.select(df.name, F.when(df.age > 3, 1).otherwise(0)).show() |
| +-----+-------------------------------------+ |
| | name|CASE WHEN (age > 3) THEN 1 ELSE 0 END| |
| +-----+-------------------------------------+ |
| |Alice| 0| |
| | Bob| 1| |
| +-----+-------------------------------------+ |
| |
| See Also |
| -------- |
| pyspark.sql.functions.when |
| """ |
| v = value._jc if isinstance(value, Column) else value |
| jc = self._jc.otherwise(v) |
| return Column(jc) |
| |
| def over(self, window: "WindowSpec") -> "Column": |
| """ |
| Define a windowing column. |
| |
| .. versionadded:: 1.4.0 |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| |
| Parameters |
| ---------- |
| window : :class:`WindowSpec` |
| |
| Returns |
| ------- |
| :class:`Column` |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Window |
| >>> window = Window.partitionBy("name").orderBy("age") \ |
| .rowsBetween(Window.unboundedPreceding, Window.currentRow) |
| >>> from pyspark.sql.functions import rank, min, desc |
| >>> df = spark.createDataFrame( |
| ... [(2, "Alice"), (5, "Bob")], ["age", "name"]) |
| >>> df.withColumn("rank", rank().over(window)) \ |
| .withColumn("min", min('age').over(window)).sort(desc("age")).show() |
| +---+-----+----+---+ |
| |age| name|rank|min| |
| +---+-----+----+---+ |
| | 5| Bob| 1| 5| |
| | 2|Alice| 1| 2| |
| +---+-----+----+---+ |
| """ |
| from pyspark.sql.window import WindowSpec |
| |
| if not isinstance(window, WindowSpec): |
| raise TypeError("window should be WindowSpec") |
| jc = self._jc.over(window._jspec) |
| return Column(jc) |
| |
| def __nonzero__(self) -> None: |
| raise ValueError( |
| "Cannot convert column into bool: please use '&' for 'and', '|' for 'or', " |
| "'~' for 'not' when building DataFrame boolean expressions." |
| ) |
| |
| __bool__ = __nonzero__ |
| |
| def __repr__(self) -> str: |
| return "Column<'%s'>" % self._jc.toString() |
| |
| |
| def _test() -> None: |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.sql.column |
| |
| globs = pyspark.sql.column.__dict__.copy() |
| spark = SparkSession.builder.master("local[4]").appName("sql.column tests").getOrCreate() |
| globs["spark"] = spark |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.column, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF, |
| ) |
| spark.stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |