| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| from typing import cast |
| |
| from pyspark.errors import AnalysisException, PythonException |
| from pyspark.sql.functions import ( |
| array, |
| explode, |
| col, |
| lit, |
| mean, |
| min, |
| max, |
| rank, |
| udf, |
| pandas_udf, |
| PandasUDFType, |
| ) |
| from pyspark.sql.window import Window |
| from pyspark.testing.sqlutils import ( |
| ReusedSQLTestCase, |
| have_pandas, |
| have_pyarrow, |
| pandas_requirement_message, |
| pyarrow_requirement_message, |
| ) |
| from pyspark.testing.utils import assertDataFrameEqual |
| |
| if have_pandas: |
| from pandas.testing import assert_frame_equal |
| |
| |
| @unittest.skipIf( |
| not have_pandas or not have_pyarrow, |
| cast(str, pandas_requirement_message or pyarrow_requirement_message), |
| ) |
| class WindowPandasUDFTestsMixin: |
| @property |
| def data(self): |
| return ( |
| self.spark.range(10) |
| .toDF("id") |
| .withColumn("vs", array([lit(i * 1.0) + col("id") for i in range(20, 30)])) |
| .withColumn("v", explode(col("vs"))) |
| .drop("vs") |
| .withColumn("w", lit(1.0)) |
| ) |
| |
| @property |
| def python_plus_one(self): |
| @udf("double") |
| def plus_one(v): |
| assert isinstance(v, float) |
| return v + 1 |
| |
| return plus_one |
| |
| @property |
| def pandas_scalar_time_two(self): |
| return pandas_udf(lambda v: v * 2, "double") |
| |
| @property |
| def pandas_agg_count_udf(self): |
| @pandas_udf("long", PandasUDFType.GROUPED_AGG) |
| def count(v): |
| return len(v) |
| |
| return count |
| |
| @property |
| def pandas_agg_mean_udf(self): |
| @pandas_udf("double", PandasUDFType.GROUPED_AGG) |
| def avg(v): |
| return v.mean() |
| |
| return avg |
| |
| @property |
| def pandas_agg_max_udf(self): |
| @pandas_udf("double", PandasUDFType.GROUPED_AGG) |
| def max(v): |
| return v.max() |
| |
| return max |
| |
| @property |
| def pandas_agg_min_udf(self): |
| @pandas_udf("double", PandasUDFType.GROUPED_AGG) |
| def min(v): |
| return v.min() |
| |
| return min |
| |
| @property |
| def pandas_agg_weighted_mean_udf(self): |
| import numpy as np |
| |
| @pandas_udf("double", PandasUDFType.GROUPED_AGG) |
| def weighted_mean(v, w): |
| return np.average(v, weights=w) |
| |
| return weighted_mean |
| |
| @property |
| def unbounded_window(self): |
| return ( |
| Window.partitionBy("id") |
| .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) |
| .orderBy("v") |
| ) |
| |
| @property |
| def ordered_window(self): |
| return Window.partitionBy("id").orderBy("v") |
| |
| @property |
| def unpartitioned_window(self): |
| return Window.partitionBy() |
| |
| @property |
| def sliding_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(-2, 1) |
| |
| @property |
| def sliding_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(-2, 4) |
| |
| @property |
| def growing_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(Window.unboundedPreceding, 3) |
| |
| @property |
| def growing_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(Window.unboundedPreceding, 4) |
| |
| @property |
| def shrinking_row_window(self): |
| return Window.partitionBy("id").orderBy("v").rowsBetween(-2, Window.unboundedFollowing) |
| |
| @property |
| def shrinking_range_window(self): |
| return Window.partitionBy("id").orderBy("v").rangeBetween(-3, Window.unboundedFollowing) |
| |
| def test_simple(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("mean_v", mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("mean_v", mean(df["v"]).over(w)) |
| |
| result2 = df.select(mean_udf(df["v"]).over(w)) |
| expected2 = df.select(mean(df["v"]).over(w)) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| assert_frame_equal(expected2.toPandas(), result2.toPandas()) |
| |
| def test_multiple_udfs(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| result1 = ( |
| df.withColumn("mean_v", self.pandas_agg_mean_udf(df["v"]).over(w)) |
| .withColumn("max_v", self.pandas_agg_max_udf(df["v"]).over(w)) |
| .withColumn("min_w", self.pandas_agg_min_udf(df["w"]).over(w)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", mean(df["v"]).over(w)) |
| .withColumn("max_v", max(df["v"]).over(w)) |
| .withColumn("min_w", min(df["w"]).over(w)) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_replace_existing(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| result1 = df.withColumn("v", self.pandas_agg_mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v", mean(df["v"]).over(w)) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_mixed_sql(self): |
| df = self.data |
| w = self.unbounded_window |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("v", mean_udf(df["v"] * 2).over(w) + 1) |
| expected1 = df.withColumn("v", mean(df["v"] * 2).over(w) + 1) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_mixed_udf(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| plus_one = self.python_plus_one |
| time_two = self.pandas_scalar_time_two |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("v2", plus_one(mean_udf(plus_one(df["v"])).over(w))) |
| expected1 = df.withColumn("v2", plus_one(mean(plus_one(df["v"])).over(w))) |
| |
| result2 = df.withColumn("v2", time_two(mean_udf(time_two(df["v"])).over(w))) |
| expected2 = df.withColumn("v2", time_two(mean(time_two(df["v"])).over(w))) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| assert_frame_equal(expected2.toPandas(), result2.toPandas()) |
| |
| def test_without_partitionBy(self): |
| df = self.data |
| w = self.unpartitioned_window |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("v2", mean_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v2", mean(df["v"]).over(w)) |
| |
| result2 = df.select(mean_udf(df["v"]).over(w)) |
| expected2 = df.select(mean(df["v"]).over(w)) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| assert_frame_equal(expected2.toPandas(), result2.toPandas()) |
| |
| def test_mixed_sql_and_udf(self): |
| df = self.data |
| w = self.unbounded_window |
| ow = self.ordered_window |
| max_udf = self.pandas_agg_max_udf |
| min_udf = self.pandas_agg_min_udf |
| |
| result1 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - min_udf(df["v"]).over(w)) |
| expected1 = df.withColumn("v_diff", max(df["v"]).over(w) - min(df["v"]).over(w)) |
| |
| # Test mixing sql window function and window udf in the same expression |
| result2 = df.withColumn("v_diff", max_udf(df["v"]).over(w) - min(df["v"]).over(w)) |
| expected2 = expected1 |
| |
| # Test chaining sql aggregate function and udf |
| result3 = ( |
| df.withColumn("max_v", max_udf(df["v"]).over(w)) |
| .withColumn("min_v", min(df["v"]).over(w)) |
| .withColumn("v_diff", col("max_v") - col("min_v")) |
| .drop("max_v", "min_v") |
| ) |
| expected3 = expected1 |
| |
| # Test mixing sql window function and udf |
| result4 = df.withColumn("max_v", max_udf(df["v"]).over(w)).withColumn( |
| "rank", rank().over(ow) |
| ) |
| expected4 = df.withColumn("max_v", max(df["v"]).over(w)).withColumn("rank", rank().over(ow)) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| assert_frame_equal(expected2.toPandas(), result2.toPandas()) |
| assert_frame_equal(expected3.toPandas(), result3.toPandas()) |
| assert_frame_equal(expected4.toPandas(), result4.toPandas()) |
| |
| def test_array_type(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| array_udf = pandas_udf(lambda x: [1.0, 2.0], "array<double>", PandasUDFType.GROUPED_AGG) |
| result1 = df.withColumn("v2", array_udf(df["v"]).over(w)) |
| self.assertEqual(result1.first()["v2"], [1.0, 2.0]) |
| |
| def test_invalid_args(self): |
| with self.quiet(): |
| self.check_invalid_args() |
| |
| def check_invalid_args(self): |
| df = self.data |
| w = self.unbounded_window |
| |
| with self.assertRaisesRegex(AnalysisException, ".*not supported within a window function"): |
| foo_udf = pandas_udf(lambda x: x, "v double", PandasUDFType.GROUPED_MAP) |
| df.withColumn("v2", foo_udf(df["v"]).over(w)).schema |
| |
| def test_bounded_simple(self): |
| from pyspark.sql.functions import mean, max, min, count |
| |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.shrinking_range_window |
| |
| plus_one = self.python_plus_one |
| count_udf = self.pandas_agg_count_udf |
| mean_udf = self.pandas_agg_mean_udf |
| max_udf = self.pandas_agg_max_udf |
| min_udf = self.pandas_agg_min_udf |
| |
| result1 = ( |
| df.withColumn("mean_v", mean_udf(plus_one(df["v"])).over(w1)) |
| .withColumn("count_v", count_udf(df["v"]).over(w2)) |
| .withColumn("max_v", max_udf(df["v"]).over(w2)) |
| .withColumn("min_v", min_udf(df["v"]).over(w1)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", mean(plus_one(df["v"])).over(w1)) |
| .withColumn("count_v", count(df["v"]).over(w2)) |
| .withColumn("max_v", max(df["v"]).over(w2)) |
| .withColumn("min_v", min(df["v"]).over(w1)) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_growing_window(self): |
| from pyspark.sql.functions import mean |
| |
| df = self.data |
| w1 = self.growing_row_window |
| w2 = self.growing_range_window |
| |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", mean(df["v"]).over(w1)).withColumn( |
| "m2", mean(df["v"]).over(w2) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_sliding_window(self): |
| from pyspark.sql.functions import mean |
| |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.sliding_range_window |
| |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", mean(df["v"]).over(w1)).withColumn( |
| "m2", mean(df["v"]).over(w2) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_shrinking_window(self): |
| from pyspark.sql.functions import mean |
| |
| df = self.data |
| w1 = self.shrinking_row_window |
| w2 = self.shrinking_range_window |
| |
| mean_udf = self.pandas_agg_mean_udf |
| |
| result1 = df.withColumn("m1", mean_udf(df["v"]).over(w1)).withColumn( |
| "m2", mean_udf(df["v"]).over(w2) |
| ) |
| |
| expected1 = df.withColumn("m1", mean(df["v"]).over(w1)).withColumn( |
| "m2", mean(df["v"]).over(w2) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_bounded_mixed(self): |
| from pyspark.sql.functions import mean, max |
| |
| df = self.data |
| w1 = self.sliding_row_window |
| w2 = self.unbounded_window |
| |
| mean_udf = self.pandas_agg_mean_udf |
| max_udf = self.pandas_agg_max_udf |
| |
| result1 = ( |
| df.withColumn("mean_v", mean_udf(df["v"]).over(w1)) |
| .withColumn("max_v", max_udf(df["v"]).over(w2)) |
| .withColumn("mean_unbounded_v", mean_udf(df["v"]).over(w1)) |
| ) |
| |
| expected1 = ( |
| df.withColumn("mean_v", mean(df["v"]).over(w1)) |
| .withColumn("max_v", max(df["v"]).over(w2)) |
| .withColumn("mean_unbounded_v", mean(df["v"]).over(w1)) |
| ) |
| |
| assert_frame_equal(expected1.toPandas(), result1.toPandas()) |
| |
| def test_named_arguments(self): |
| df = self.data |
| weighted_mean = self.pandas_agg_weighted_mean_udf |
| |
| for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]: |
| for i, windowed in enumerate( |
| [ |
| df.withColumn("wm", weighted_mean(df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)), |
| ] |
| ): |
| with self.subTest(bound=bound, query_no=i): |
| assertDataFrameEqual(windowed, df.withColumn("wm", mean(df.v).over(w))) |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| for i, func_call in enumerate( |
| [ |
| "weighted_mean(v, w => w)", |
| "weighted_mean(v => v, w => w)", |
| "weighted_mean(w => w, v => v)", |
| ] |
| ): |
| with self.subTest(window_spec=window_spec, query_no=i): |
| assertDataFrameEqual( |
| self.spark.sql( |
| f"SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| ), |
| self.spark.sql(f"SELECT id, mean(v) OVER ({window_spec}) as wm FROM v"), |
| ) |
| |
| def test_named_arguments_negative(self): |
| df = self.data |
| weighted_mean = self.pandas_agg_weighted_mean_udf |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| with self.subTest(window_spec=window_spec): |
| with self.assertRaisesRegex( |
| AnalysisException, |
| "DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE", |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| PythonException, r"weighted_mean\(\) got an unexpected keyword argument 'x'" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, x => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| PythonException, r"weighted_mean\(\) got multiple values for argument 'v'" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| def test_kwargs(self): |
| df = self.data |
| |
| @pandas_udf("double", PandasUDFType.GROUPED_AGG) |
| def weighted_mean(**kwargs): |
| import numpy as np |
| |
| return np.average(kwargs["v"], weights=kwargs["w"]) |
| |
| for w, bound in [(self.sliding_row_window, True), (self.unbounded_window, False)]: |
| for i, windowed in enumerate( |
| [ |
| df.withColumn("wm", weighted_mean(v=df.v, w=df.w).over(w)), |
| df.withColumn("wm", weighted_mean(w=df.w, v=df.v).over(w)), |
| ] |
| ): |
| with self.subTest(bound=bound, query_no=i): |
| assertDataFrameEqual(windowed, df.withColumn("wm", mean(df.v).over(w))) |
| |
| with self.tempView("v"): |
| df.createOrReplaceTempView("v") |
| self.spark.udf.register("weighted_mean", weighted_mean) |
| |
| base_sql = "SELECT id, {func_call} OVER ({window_spec}) as wm FROM v" |
| |
| for w in [ |
| "ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING", |
| "ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING", |
| ]: |
| window_spec = f"PARTITION BY id ORDER BY v {w}" |
| with self.subTest(window_spec=window_spec): |
| for i, func_call in enumerate( |
| [ |
| "weighted_mean(v => v, w => w)", |
| "weighted_mean(w => w, v => v)", |
| ] |
| ): |
| with self.subTest(query_no=i): |
| assertDataFrameEqual( |
| self.spark.sql( |
| base_sql.format(func_call=func_call, window_spec=window_spec) |
| ), |
| self.spark.sql( |
| base_sql.format(func_call="mean(v)", window_spec=window_spec) |
| ), |
| ) |
| |
| # negative |
| with self.assertRaisesRegex( |
| AnalysisException, |
| "DUPLICATE_ROUTINE_PARAMETER_ASSIGNMENT.DOUBLE_NAMED_ARGUMENT_REFERENCE", |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, v => w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| with self.assertRaisesRegex( |
| AnalysisException, "UNEXPECTED_POSITIONAL_ARGUMENT" |
| ): |
| self.spark.sql( |
| base_sql.format( |
| func_call="weighted_mean(v => v, w)", window_spec=window_spec |
| ) |
| ).show() |
| |
| |
| class WindowPandasUDFTests(WindowPandasUDFTestsMixin, ReusedSQLTestCase): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.pandas.test_pandas_udf_window import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |