blob: e8fffea7e33be4d91c5e574e1020bc8dada625da [file] [log] [blame]
.. Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
.. http://www.apache.org/licenses/LICENSE-2.0
.. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
.. _user_guide.options:
====================
Options and settings
====================
.. currentmodule:: pyspark.pandas
Pandas API on Spark has an options system that lets you customize some aspects of its behaviour,
display-related options being those the user is most likely to adjust.
Options have a full "dotted-style", case-insensitive name (e.g. ``display.max_rows``).
You can get/set options directly as attributes of the top-level ``options`` attribute:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.options.display.max_rows
1000
>>> ps.options.display.max_rows = 10
>>> ps.options.display.max_rows
10
The API is composed of 3 relevant functions, available directly from the ``pandas_on_spark``
namespace:
* :func:`get_option` / :func:`set_option` - get/set the value of a single option.
* :func:`reset_option` - reset one or more options to their default value.
**Note:** Developers can check out `pyspark.pandas/config.py <https://github.com/apache/spark/blob/master/python/pyspark/pandas/config.py>`_ for more information.
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.get_option("display.max_rows")
1000
>>> ps.set_option("display.max_rows", 101)
>>> ps.get_option("display.max_rows")
101
Getting and setting options
---------------------------
As described above, :func:`get_option` and :func:`set_option`
are available from the ``pandas_on_spark`` namespace. To change an option, call
``set_option('option name', new_value)``.
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.get_option('compute.max_rows')
1000
>>> ps.set_option('compute.max_rows', 2000)
>>> ps.get_option('compute.max_rows')
2000
All options also have a default value, and you can use ``reset_option`` to do just that:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.reset_option("display.max_rows")
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.get_option("display.max_rows")
1000
>>> ps.set_option("display.max_rows", 999)
>>> ps.get_option("display.max_rows")
999
>>> ps.reset_option("display.max_rows")
>>> ps.get_option("display.max_rows")
1000
``option_context`` context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the `with` block:
.. code-block:: python
>>> with ps.option_context("display.max_rows", 10, "compute.max_rows", 5):
... print(ps.get_option("display.max_rows"))
... print(ps.get_option("compute.max_rows"))
10
5
>>> print(ps.get_option("display.max_rows"))
>>> print(ps.get_option("compute.max_rows"))
1000
1000
Operations on different DataFrames
----------------------------------
Pandas API on Spark disallows the operations on different DataFrames (or Series) by default to prevent expensive
operations. It internally performs a join operation which can be expensive in general.
This can be enabled by setting `compute.ops_on_diff_frames` to `True` to allow such cases.
See the examples below.
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.ops_on_diff_frames', True)
>>> psdf1 = ps.range(5)
>>> psdf2 = ps.DataFrame({'id': [5, 4, 3]})
>>> (psdf1 - psdf2).sort_index()
id
0 -5.0
1 -3.0
2 -1.0
3 NaN
4 NaN
>>> ps.reset_option('compute.ops_on_diff_frames')
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.ops_on_diff_frames', True)
>>> psdf = ps.range(5)
>>> psser_a = ps.Series([1, 2, 3, 4])
>>> # 'psser_a' is not from 'psdf' DataFrame. So it is considered as a Series not from 'psdf'.
>>> psdf['new_col'] = psser_a
>>> psdf
id new_col
0 0 1.0
1 1 2.0
3 3 4.0
2 2 3.0
4 4 NaN
>>> ps.reset_option('compute.ops_on_diff_frames')
Default Index type
------------------
In the pandas API on Spark, the default index is used in several cases, for instance,
when Spark DataFrame is converted into pandas-on-Spark DataFrame. In this case, internally pandas API on Spark attaches a
default index into pandas-on-Spark DataFrame.
There are several types of the default index that can be configured by `compute.default_index_type` as below:
**sequence**: It implements a sequence that increases one by one, by PySpark's Window function without
specifying a partition. Therefore, it can end up with a whole partition in a single node.
This index type should be avoided when the data is large. See the example below:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'sequence')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Index([0, 1, 2], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
.. code-block:: python
>>> from pyspark.sql import functions as sf, Window
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> sequential_index = sf.row_number().over(
... Window.orderBy(sf.monotonically_increasing_id().asc())) - 1
>>> spark_df.select(sequential_index).rdd.map(lambda r: r[0]).collect()
[0, 1, 2]
**distributed-sequence** (default): It implements a sequence that increases one by one, by group-by and
group-map approach in a distributed manner. It still generates the sequential index globally.
If the default index must be the sequence in a large dataset, this
index has to be used. See the example below:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'distributed-sequence')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Index([0, 1, 2], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> spark_df.rdd.zipWithIndex().map(lambda p: p[1]).collect()
[0, 1, 2]
**distributed**: It implements a monotonically increasing sequence simply by using
PySpark's `monotonically_increasing_id` function in a fully distributed manner. The
values are indeterministic. If the index does not have to be a sequence that increases
one by one, this index should be used. Performance-wise, this index almost does not
have any penalty compared to other index types. See the example below:
.. code-block:: python
>>> import pyspark.pandas as ps
>>> ps.set_option('compute.default_index_type', 'distributed')
>>> psdf = ps.range(3)
>>> ps.reset_option('compute.default_index_type')
>>> psdf.index
Index([25769803776, 60129542144, 94489280512], dtype='int64')
This is conceptually equivalent to the PySpark example as below:
.. code-block:: python
>>> from pyspark.sql import functions as sf
>>> import pyspark.pandas as ps
>>> spark_df = ps.range(3).to_spark()
>>> spark_df.select(sf.monotonically_increasing_id()) \
... .rdd.map(lambda r: r[0]).collect()
[25769803776, 60129542144, 94489280512]
.. warning::
It is very unlikely for this type of index to be used for computing two
different dataframes because it is not guaranteed to have the same indexes in two dataframes.
If you use this default index and turn on `compute.ops_on_diff_frames`, the result
from the operations between two different DataFrames will likely be an unexpected
output due to the indeterministic index values.
Available options
-----------------
=============================== ======================= =====================================================
Option Default Description
=============================== ======================= =====================================================
display.max_rows 1000 This sets the maximum number of rows pandas-on-Spark
should output when printing out various output. For
example, this value determines the number of rows to
be shown at the repr() in a dataframe. Set `None` to
unlimit the input length. Default is 1000.
compute.max_rows 1000 'compute.max_rows' sets the limit of the current
pandas-on-Spark DataFrame. Set `None` to unlimit the
input length. When the limit is set, it is executed
by the shortcut by collecting the data into the
driver, and then using the pandas API. If the limit
is unset, the operation is executed by PySpark.
Default is 1000.
compute.shortcut_limit 1000 'compute.shortcut_limit' sets the limit for a
shortcut. It computes specified number of rows and
use its schema. When the dataframe length is larger
than this limit, pandas-on-Spark uses PySpark to
compute.
compute.ops_on_diff_frames False This determines whether or not to operate between two
different dataframes. For example, 'combine_frames'
function internally performs a join operation which
can be expensive in general. So, if
`compute.ops_on_diff_frames` variable is not True,
that method throws an exception.
compute.default_index_type 'distributed-sequence' This sets the default index type: sequence,
distributed and distributed-sequence.
compute.default_index_cache 'MEMORY_AND_DISK_SER' This sets the default storage level for temporary
RDDs cached in distributed-sequence indexing: 'NONE',
'DISK_ONLY', 'DISK_ONLY_2', 'DISK_ONLY_3',
'MEMORY_ONLY', 'MEMORY_ONLY_2', 'MEMORY_ONLY_SER',
'MEMORY_ONLY_SER_2', 'MEMORY_AND_DISK',
'MEMORY_AND_DISK_2', 'MEMORY_AND_DISK_SER',
'MEMORY_AND_DISK_SER_2', 'OFF_HEAP',
'LOCAL_CHECKPOINT'.
compute.ordered_head False 'compute.ordered_head' sets whether or not to operate
head with natural ordering. pandas-on-Spark does not
guarantee the row ordering so `head` could return
some rows from distributed partitions. If
'compute.ordered_head' is set to True, pandas-on-
Spark performs natural ordering beforehand, but it
will cause a performance overhead.
compute.eager_check True 'compute.eager_check' sets whether or not to launch
some Spark jobs just for the sake of validation. If
'compute.eager_check' is set to True, pandas-on-Spark
performs the validation beforehand, but it will cause
a performance overhead. Otherwise, pandas-on-Spark
skip the validation and will be slightly different
from pandas. Affected APIs: `Series.dot`,
`Series.asof`, `Series.compare`,
`FractionalExtensionOps.astype`,
`IntegralExtensionOps.astype`,
`FractionalOps.astype`, `DecimalOps.astype`, `skipna
of statistical functions`.
compute.isin_limit 80 'compute.isin_limit' sets the limit for filtering by
'Column.isin(list)'. If the length of the list is
above the limit, broadcast join is used instead for
better performance.
compute.pandas_fallback False 'compute.pandas_fallback' sets whether or not to
fallback automatically to Pandas' implementation.
plotting.max_rows 1000 'plotting.max_rows' sets the visual limit on top-n-
based plots such as `plot.bar` and `plot.pie`. If it
is set to 1000, the first 1000 data points will be
used for plotting. Default is 1000.
plotting.sample_ratio None 'plotting.sample_ratio' sets the proportion of data
that will be plotted for sample-based plots such as
`plot.line` and `plot.area`. This option defaults to
'plotting.max_rows' option.
plotting.backend 'plotly' Backend to use for plotting. Default is plotly.
Supports any package that has a top-level `.plot`
method. Known options are: [matplotlib, plotly].
=============================== ======================= =====================================================