| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| from itertools import product |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class GroupbyDescribeMixin: |
| def test_describe(self): |
| # support for numeric type, not support for string type yet |
| datas = [] |
| datas.append({"a": [1, 1, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) |
| datas.append({"a": [-1, -1, -3], "b": [-4, -5, -6], "c": [-7, -8, -9]}) |
| datas.append({"a": [0, 0, 0], "b": [0, 0, 0], "c": [0, 8, 0]}) |
| # it is okay if string type column as a group key |
| datas.append({"a": ["a", "a", "c"], "b": [4, 5, 6], "c": [7, 8, 9]}) |
| |
| percentiles = [0.25, 0.5, 0.75] |
| formatted_percentiles = ["25%", "50%", "75%"] |
| non_percentile_stats = ["count", "mean", "std", "min", "max"] |
| |
| for data in datas: |
| pdf = pd.DataFrame(data) |
| psdf = ps.from_pandas(pdf) |
| |
| describe_pdf = pdf.groupby("a").describe().sort_index() |
| describe_psdf = psdf.groupby("a").describe().sort_index() |
| |
| # since the result of percentile columns are slightly difference from pandas, |
| # we should check them separately: non-percentile columns & percentile columns |
| |
| # 1. Check that non-percentile columns are equal. |
| agg_cols = [col.name for col in psdf.groupby("a")._agg_columns] |
| self.assert_eq( |
| describe_psdf.drop(columns=list(product(agg_cols, formatted_percentiles))), |
| describe_pdf.drop(columns=formatted_percentiles, level=1), |
| check_exact=False, |
| ) |
| |
| # 2. Check that percentile columns are equal. |
| # The interpolation argument is yet to be implemented in Koalas. |
| quantile_pdf = pdf.groupby("a").quantile(percentiles, interpolation="nearest") |
| quantile_pdf = quantile_pdf.unstack(level=1).astype(float) |
| self.assert_eq( |
| describe_psdf.drop(columns=list(product(agg_cols, non_percentile_stats))), |
| quantile_pdf.rename(columns="{:.0%}".format, level=1), |
| ) |
| |
| # not support for string type yet |
| datas = [] |
| datas.append({"a": ["a", "a", "c"], "b": ["d", "e", "f"], "c": ["g", "h", "i"]}) |
| datas.append({"a": ["a", "a", "c"], "b": [4, 0, 1], "c": ["g", "h", "i"]}) |
| for data in datas: |
| pdf = pd.DataFrame(data) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assertRaises( |
| NotImplementedError, lambda: psdf.groupby("a").describe().sort_index() |
| ) |
| |
| # multi-index columns |
| pdf = pd.DataFrame({("x", "a"): [1, 1, 3], ("x", "b"): [4, 5, 6], ("y", "c"): [7, 8, 9]}) |
| psdf = ps.from_pandas(pdf) |
| |
| describe_pdf = pdf.groupby(("x", "a")).describe().sort_index() |
| describe_psdf = psdf.groupby(("x", "a")).describe().sort_index() |
| |
| # 1. Check that non-percentile columns are equal. |
| agg_column_labels = [col._column_label for col in psdf.groupby(("x", "a"))._agg_columns] |
| self.assert_eq( |
| describe_psdf.drop( |
| columns=[ |
| tuple(list(label) + [s]) |
| for label, s in product(agg_column_labels, formatted_percentiles) |
| ] |
| ), |
| describe_pdf.drop(columns=formatted_percentiles, level=2), |
| check_exact=False, |
| ) |
| |
| # 2. Check that percentile columns are equal. |
| # The interpolation argument is yet to be implemented in Koalas. |
| quantile_pdf = pdf.groupby(("x", "a")).quantile(percentiles, interpolation="nearest") |
| quantile_pdf = quantile_pdf.unstack(level=1).astype(float) |
| |
| self.assert_eq( |
| describe_psdf.drop( |
| columns=[ |
| tuple(list(label) + [s]) |
| for label, s in product(agg_column_labels, non_percentile_stats) |
| ] |
| ), |
| quantile_pdf.rename(columns="{:.0%}".format, level=2), |
| ) |
| |
| |
| class GroupbyDescribeTests( |
| GroupbyDescribeMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.groupby.test_describe import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |