blob: a9ac050cb27bb8b9240e57c4650c4e0ee114327e [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
from itertools import product
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class GroupbyDescribeMixin:
def test_describe(self):
# support for numeric type, not support for string type yet
datas = []
datas.append({"a": [1, 1, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
datas.append({"a": [-1, -1, -3], "b": [-4, -5, -6], "c": [-7, -8, -9]})
datas.append({"a": [0, 0, 0], "b": [0, 0, 0], "c": [0, 8, 0]})
# it is okay if string type column as a group key
datas.append({"a": ["a", "a", "c"], "b": [4, 5, 6], "c": [7, 8, 9]})
percentiles = [0.25, 0.5, 0.75]
formatted_percentiles = ["25%", "50%", "75%"]
non_percentile_stats = ["count", "mean", "std", "min", "max"]
for data in datas:
pdf = pd.DataFrame(data)
psdf = ps.from_pandas(pdf)
describe_pdf = pdf.groupby("a").describe().sort_index()
describe_psdf = psdf.groupby("a").describe().sort_index()
# since the result of percentile columns are slightly difference from pandas,
# we should check them separately: non-percentile columns & percentile columns
# 1. Check that non-percentile columns are equal.
agg_cols = [col.name for col in psdf.groupby("a")._agg_columns]
self.assert_eq(
describe_psdf.drop(columns=list(product(agg_cols, formatted_percentiles))),
describe_pdf.drop(columns=formatted_percentiles, level=1),
check_exact=False,
)
# 2. Check that percentile columns are equal.
# The interpolation argument is yet to be implemented in Koalas.
quantile_pdf = pdf.groupby("a").quantile(percentiles, interpolation="nearest")
quantile_pdf = quantile_pdf.unstack(level=1).astype(float)
self.assert_eq(
describe_psdf.drop(columns=list(product(agg_cols, non_percentile_stats))),
quantile_pdf.rename(columns="{:.0%}".format, level=1),
)
# not support for string type yet
datas = []
datas.append({"a": ["a", "a", "c"], "b": ["d", "e", "f"], "c": ["g", "h", "i"]})
datas.append({"a": ["a", "a", "c"], "b": [4, 0, 1], "c": ["g", "h", "i"]})
for data in datas:
pdf = pd.DataFrame(data)
psdf = ps.from_pandas(pdf)
self.assertRaises(
NotImplementedError, lambda: psdf.groupby("a").describe().sort_index()
)
# multi-index columns
pdf = pd.DataFrame({("x", "a"): [1, 1, 3], ("x", "b"): [4, 5, 6], ("y", "c"): [7, 8, 9]})
psdf = ps.from_pandas(pdf)
describe_pdf = pdf.groupby(("x", "a")).describe().sort_index()
describe_psdf = psdf.groupby(("x", "a")).describe().sort_index()
# 1. Check that non-percentile columns are equal.
agg_column_labels = [col._column_label for col in psdf.groupby(("x", "a"))._agg_columns]
self.assert_eq(
describe_psdf.drop(
columns=[
tuple(list(label) + [s])
for label, s in product(agg_column_labels, formatted_percentiles)
]
),
describe_pdf.drop(columns=formatted_percentiles, level=2),
check_exact=False,
)
# 2. Check that percentile columns are equal.
# The interpolation argument is yet to be implemented in Koalas.
quantile_pdf = pdf.groupby(("x", "a")).quantile(percentiles, interpolation="nearest")
quantile_pdf = quantile_pdf.unstack(level=1).astype(float)
self.assert_eq(
describe_psdf.drop(
columns=[
tuple(list(label) + [s])
for label, s in product(agg_column_labels, non_percentile_stats)
]
),
quantile_pdf.rename(columns="{:.0%}".format, level=2),
)
class GroupbyDescribeTests(
GroupbyDescribeMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.groupby.test_describe import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)