| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import pandas as pd |
| import numpy as np |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import set_option, reset_option |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class DiffFramesSeriesMixin: |
| @classmethod |
| def setUpClass(cls): |
| super().setUpClass() |
| set_option("compute.ops_on_diff_frames", True) |
| |
| @classmethod |
| def tearDownClass(cls): |
| reset_option("compute.ops_on_diff_frames") |
| super().tearDownClass() |
| |
| def test_series_repeat(self): |
| pser1 = pd.Series(["a", "b", "c"], name="a") |
| pser2 = pd.Series([10, 20, 30], name="rep") |
| psser1 = ps.from_pandas(pser1) |
| psser2 = ps.from_pandas(pser2) |
| |
| self.assert_eq(psser1.repeat(psser2).sort_index(), pser1.repeat(pser2).sort_index()) |
| |
| def test_series_ops(self): |
| pser1 = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x", index=[11, 12, 13, 14, 15, 16, 17]) |
| pser2 = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x", index=[11, 12, 13, 14, 15, 16, 17]) |
| pidx1 = pd.Index([10, 11, 12, 13, 14, 15, 16], name="x") |
| psser1 = ps.from_pandas(pser1) |
| psser2 = ps.from_pandas(pser2) |
| psidx1 = ps.from_pandas(pidx1) |
| |
| self.assert_eq( |
| (psser1 + 1 + 10 * psser2).sort_index(), (pser1 + 1 + 10 * pser2).sort_index() |
| ) |
| self.assert_eq( |
| (psser1 + 1 + 10 * psser2.rename()).sort_index(), |
| (pser1 + 1 + 10 * pser2.rename()).sort_index(), |
| ) |
| self.assert_eq( |
| (psser1.rename() + 1 + 10 * psser2).sort_index(), |
| (pser1.rename() + 1 + 10 * pser2).sort_index(), |
| ) |
| self.assert_eq( |
| (psser1.rename() + 1 + 10 * psser2.rename()).sort_index(), |
| (pser1.rename() + 1 + 10 * pser2.rename()).sort_index(), |
| ) |
| |
| self.assert_eq(psser1 + 1 + 10 * psidx1, pser1 + 1 + 10 * pidx1) |
| self.assert_eq(psser1.rename() + 1 + 10 * psidx1, pser1.rename() + 1 + 10 * pidx1) |
| self.assert_eq(psser1 + 1 + 10 * psidx1.rename(None), pser1 + 1 + 10 * pidx1.rename(None)) |
| self.assert_eq( |
| psser1.rename() + 1 + 10 * psidx1.rename(None), |
| pser1.rename() + 1 + 10 * pidx1.rename(None), |
| ) |
| |
| self.assert_eq(psidx1 + 1 + 10 * psser1, pidx1 + 1 + 10 * pser1) |
| self.assert_eq(psidx1 + 1 + 10 * psser1.rename(), pidx1 + 1 + 10 * pser1.rename()) |
| self.assert_eq(psidx1.rename(None) + 1 + 10 * psser1, pidx1.rename(None) + 1 + 10 * pser1) |
| self.assert_eq( |
| psidx1.rename(None) + 1 + 10 * psser1.rename(), |
| pidx1.rename(None) + 1 + 10 * pser1.rename(), |
| ) |
| |
| pidx2 = pd.Index([11, 12, 13]) |
| psidx2 = ps.from_pandas(pidx2) |
| |
| with self.assertRaisesRegex( |
| ValueError, "operands could not be broadcast together with shapes" |
| ): |
| psser1 + psidx2 |
| |
| with self.assertRaisesRegex( |
| ValueError, "operands could not be broadcast together with shapes" |
| ): |
| psidx2 + psser1 |
| |
| def test_series_eq(self): |
| pser = pd.Series([1, 2, 3, 4, 5, 6], name="x") |
| psser = ps.from_pandas(pser) |
| |
| # other = Series |
| pandas_other = pd.Series([np.nan, 1, 3, 4, np.nan, 6], name="x") |
| pandas_on_spark_other = ps.from_pandas(pandas_other) |
| self.assert_eq(pser.eq(pandas_other), psser.eq(pandas_on_spark_other).sort_index()) |
| self.assert_eq(pser == pandas_other, (psser == pandas_on_spark_other).sort_index()) |
| |
| # other = Series with different Index |
| pandas_other = pd.Series( |
| [np.nan, 1, 3, 4, np.nan, 6], index=[10, 20, 30, 40, 50, 60], name="x" |
| ) |
| pandas_on_spark_other = ps.from_pandas(pandas_other) |
| self.assert_eq(pser.eq(pandas_other), psser.eq(pandas_on_spark_other).sort_index()) |
| |
| # other = Index |
| pandas_other = pd.Index([np.nan, 1, 3, 4, np.nan, 6], name="x") |
| pandas_on_spark_other = ps.from_pandas(pandas_other) |
| self.assert_eq(pser.eq(pandas_other), psser.eq(pandas_on_spark_other).sort_index()) |
| self.assert_eq(pser == pandas_other, (psser == pandas_on_spark_other).sort_index()) |
| |
| |
| class DiffFramesSeriesTests(DiffFramesSeriesMixin, PandasOnSparkTestCase, SQLTestUtils): |
| pass |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.diff_frames_ops.test_series import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |