| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import set_option, reset_option |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class GroupByAggregateMixin: |
| @classmethod |
| def setUpClass(cls): |
| super().setUpClass() |
| set_option("compute.ops_on_diff_frames", True) |
| |
| @classmethod |
| def tearDownClass(cls): |
| reset_option("compute.ops_on_diff_frames") |
| super().tearDownClass() |
| |
| def test_aggregate(self): |
| pdf1 = pd.DataFrame({"C": [0.362, 0.227, 1.267, -0.562], "B": [1, 2, 3, 4]}) |
| pdf2 = pd.DataFrame({"A": [1, 1, 2, 2]}) |
| psdf1 = ps.from_pandas(pdf1) |
| psdf2 = ps.from_pandas(pdf2) |
| |
| for as_index in [True, False]: |
| if as_index: |
| |
| def sort(df): |
| return df.sort_index() |
| |
| else: |
| |
| def sort(df): |
| return df.sort_values(list(df.columns)).reset_index(drop=True) |
| |
| with self.subTest(as_index=as_index): |
| self.assert_eq( |
| sort(psdf1.groupby(psdf2.A, as_index=as_index).agg("sum")), |
| sort(pdf1.groupby(pdf2.A, as_index=as_index).agg("sum")), |
| ) |
| self.assert_eq( |
| sort(psdf1.groupby(psdf2.A, as_index=as_index).agg({"B": "min", "C": "sum"})), |
| sort(pdf1.groupby(pdf2.A, as_index=as_index).agg({"B": "min", "C": "sum"})), |
| ) |
| self.assert_eq( |
| sort( |
| psdf1.groupby(psdf2.A, as_index=as_index).agg( |
| {"B": ["min", "max"], "C": "sum"} |
| ) |
| ), |
| sort( |
| pdf1.groupby(pdf2.A, as_index=as_index).agg( |
| {"B": ["min", "max"], "C": "sum"} |
| ) |
| ), |
| ) |
| self.assert_eq( |
| sort(psdf1.groupby([psdf1.C, psdf2.A], as_index=as_index).agg("sum")), |
| sort(pdf1.groupby([pdf1.C, pdf2.A], as_index=as_index).agg("sum")), |
| ) |
| self.assert_eq( |
| sort(psdf1.groupby([psdf1.C + 1, psdf2.A], as_index=as_index).agg("sum")), |
| sort(pdf1.groupby([pdf1.C + 1, pdf2.A], as_index=as_index).agg("sum")), |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("Y", "C"), ("X", "B")]) |
| pdf1.columns = columns |
| psdf1.columns = columns |
| |
| columns = pd.MultiIndex.from_tuples([("X", "A")]) |
| pdf2.columns = columns |
| psdf2.columns = columns |
| |
| for as_index in [True, False]: |
| stats_psdf = psdf1.groupby(psdf2[("X", "A")], as_index=as_index).agg( |
| {("X", "B"): "min", ("Y", "C"): "sum"} |
| ) |
| stats_pdf = pdf1.groupby(pdf2[("X", "A")], as_index=as_index).agg( |
| {("X", "B"): "min", ("Y", "C"): "sum"} |
| ) |
| self.assert_eq( |
| stats_psdf.sort_values(by=[("X", "B"), ("Y", "C")]).reset_index(drop=True), |
| stats_pdf.sort_values(by=[("X", "B"), ("Y", "C")]).reset_index(drop=True), |
| ) |
| |
| stats_psdf = psdf1.groupby(psdf2[("X", "A")]).agg( |
| {("X", "B"): ["min", "max"], ("Y", "C"): "sum"} |
| ) |
| stats_pdf = pdf1.groupby(pdf2[("X", "A")]).agg( |
| {("X", "B"): ["min", "max"], ("Y", "C"): "sum"} |
| ) |
| self.assert_eq( |
| stats_psdf.sort_values( |
| by=[("X", "B", "min"), ("X", "B", "max"), ("Y", "C", "sum")] |
| ).reset_index(drop=True), |
| stats_pdf.sort_values( |
| by=[("X", "B", "min"), ("X", "B", "max"), ("Y", "C", "sum")] |
| ).reset_index(drop=True), |
| ) |
| |
| |
| class GroupByAggregateTests( |
| GroupByAggregateMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.diff_frames_ops.test_groupby_aggregate import * # noqa |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |