blob: 2befaa6ed9509a1d074f33b73d84be41563d0c5e [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas.config import set_option, reset_option
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class CompareSeriesMixin:
@classmethod
def setUpClass(cls):
super().setUpClass()
set_option("compute.ops_on_diff_frames", True)
@classmethod
def tearDownClass(cls):
reset_option("compute.ops_on_diff_frames")
super().tearDownClass()
def test_compare(self):
pser1 = pd.Series(["b", "c", np.nan, "g", np.nan])
pser2 = pd.Series(["a", "c", np.nan, np.nan, "h"])
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
self.assert_eq(
pser1.compare(pser2).sort_index(),
psser1.compare(psser2).sort_index(),
)
# `keep_shape=True`
self.assert_eq(
pser1.compare(pser2, keep_shape=True).sort_index(),
psser1.compare(psser2, keep_shape=True).sort_index(),
)
# `keep_equal=True`
self.assert_eq(
pser1.compare(pser2, keep_equal=True).sort_index(),
psser1.compare(psser2, keep_equal=True).sort_index(),
)
# `keep_shape=True` and `keep_equal=True`
self.assert_eq(
pser1.compare(pser2, keep_shape=True, keep_equal=True).sort_index(),
psser1.compare(psser2, keep_shape=True, keep_equal=True).sort_index(),
)
# MultiIndex
pser1.index = pd.MultiIndex.from_tuples(
[("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")]
)
pser2.index = pd.MultiIndex.from_tuples(
[("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")]
)
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
self.assert_eq(
pser1.compare(pser2).sort_index(),
psser1.compare(psser2).sort_index(),
)
# `keep_shape=True` with MultiIndex
self.assert_eq(
pser1.compare(pser2, keep_shape=True).sort_index(),
psser1.compare(psser2, keep_shape=True).sort_index(),
)
# `keep_equal=True` with MultiIndex
self.assert_eq(
pser1.compare(pser2, keep_equal=True).sort_index(),
psser1.compare(psser2, keep_equal=True).sort_index(),
)
# `keep_shape=True` and `keep_equal=True` with MultiIndex
self.assert_eq(
pser1.compare(pser2, keep_shape=True, keep_equal=True).sort_index(),
psser1.compare(psser2, keep_shape=True, keep_equal=True).sort_index(),
)
# Different Index
with self.assertRaisesRegex(
ValueError, "Can only compare identically-labeled Series objects"
):
psser1 = ps.Series(
[1, 2, 3, 4, 5],
index=pd.Index([1, 2, 3, 4, 5]),
)
psser2 = ps.Series(
[2, 2, 3, 4, 1],
index=pd.Index([5, 4, 3, 2, 1]),
)
psser1.compare(psser2)
# Different MultiIndex
with self.assertRaisesRegex(
ValueError, "Can only compare identically-labeled Series objects"
):
psser1 = ps.Series(
[1, 2, 3, 4, 5],
index=pd.MultiIndex.from_tuples(
[("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")]
),
)
psser2 = ps.Series(
[2, 2, 3, 4, 1],
index=pd.MultiIndex.from_tuples(
[("a", "x"), ("b", "y"), ("c", "a"), ("x", "k"), ("q", "l")]
),
)
psser1.compare(psser2)
# SPARK-37495: Skip identical index checking of Series.compare when config
# 'compute.eager_check' is disabled
psser1 = ps.Series([1, 2, 3, 4, 5], index=pd.Index([1, 2, 3, 4, 5]))
psser2 = ps.Series([1, 2, 3, 4, 5, 6], index=pd.Index([1, 2, 4, 3, 6, 7]))
expected = ps.DataFrame(
{"self": [3, 4, 5, np.nan, np.nan], "other": [4, 3, np.nan, 5.0, 6.0]},
index=[3, 4, 5, 6, 7],
)
with ps.option_context("compute.eager_check", False):
self.assert_eq(expected, psser1.compare(psser2).sort_index())
class CompareSeriesTests(
CompareSeriesMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.diff_frames_ops.test_compare_series import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)