blob: 04e9734ff8238285f3eb45f2ea625b136f6fe084 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas.config import set_option, reset_option
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
from pyspark.pandas.typedef.typehints import extension_object_dtypes_available
class BitwiseMixin:
@classmethod
def setUpClass(cls):
super().setUpClass()
set_option("compute.ops_on_diff_frames", True)
@classmethod
def tearDownClass(cls):
reset_option("compute.ops_on_diff_frames")
super().tearDownClass()
def test_bitwise(self):
pser1 = pd.Series([True, False, True, False, np.nan, np.nan, True, False, np.nan])
pser2 = pd.Series([True, False, False, True, True, False, np.nan, np.nan, np.nan])
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
self.assert_eq(pser1 | pser2, (psser1 | psser2).sort_index())
self.assert_eq(pser1 & pser2, (psser1 & psser2).sort_index())
pser1 = pd.Series([True, False, np.nan], index=list("ABC"))
pser2 = pd.Series([False, True, np.nan], index=list("DEF"))
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
self.assert_eq(pser1 | pser2, (psser1 | psser2).sort_index())
self.assert_eq(pser1 & pser2, (psser1 & psser2).sort_index())
@unittest.skipIf(
not extension_object_dtypes_available, "pandas extension object dtypes are not available"
)
def test_bitwise_extension_dtype(self):
pser1 = pd.Series(
[True, False, True, False, np.nan, np.nan, True, False, np.nan], dtype="boolean"
)
pser2 = pd.Series(
[True, False, False, True, True, False, np.nan, np.nan, np.nan], dtype="boolean"
)
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
self.assert_eq((psser1 | psser2).sort_index(), pser1 | pser2)
self.assert_eq((psser1 & psser2).sort_index(), pser1 & pser2)
pser1 = pd.Series([True, False, np.nan], index=list("ABC"), dtype="boolean")
pser2 = pd.Series([False, True, np.nan], index=list("DEF"), dtype="boolean")
psser1 = ps.from_pandas(pser1)
psser2 = ps.from_pandas(pser2)
# a pandas bug?
# assert_eq((psser1 | psser2).sort_index(), pser1 | pser2)
# assert_eq((psser1 & psser2).sort_index(), pser1 & pser2)
self.assert_eq(
(psser1 | psser2).sort_index(),
pd.Series([True, None, None, None, True, None], index=list("ABCDEF"), dtype="boolean"),
)
self.assert_eq(
(psser1 & psser2).sort_index(),
pd.Series(
[None, False, None, False, None, None], index=list("ABCDEF"), dtype="boolean"
),
)
class BitwiseTests(
BitwiseMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.diff_frames_ops.test_bitwise import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)