| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.pandas.config import set_option, reset_option |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class AssignFrameMixin: |
| @property |
| def pdf1(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, |
| index=[0, 1, 3, 5, 6, 8, 9, 10, 11], |
| ) |
| |
| @property |
| def pdf2(self): |
| return pd.DataFrame( |
| {"a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3]}, |
| index=list(range(9)), |
| ) |
| |
| @property |
| def pdf3(self): |
| return pd.DataFrame( |
| {"b": [1, 1, 1, 1, 1, 1, 1, 1, 1], "c": [1, 1, 1, 1, 1, 1, 1, 1, 1]}, |
| index=list(range(9)), |
| ) |
| |
| @property |
| def pdf4(self): |
| return pd.DataFrame( |
| {"e": [2, 2, 2, 2, 2, 2, 2, 2, 2], "f": [2, 2, 2, 2, 2, 2, 2, 2, 2]}, |
| index=list(range(9)), |
| ) |
| |
| @property |
| def pdf5(self): |
| return pd.DataFrame( |
| { |
| "a": [1, 2, 3, 4, 5, 6, 7, 8, 9], |
| "b": [4, 5, 6, 3, 2, 1, 0, 0, 0], |
| "c": [4, 5, 6, 3, 2, 1, 0, 0, 0], |
| }, |
| index=[0, 1, 3, 5, 6, 8, 9, 10, 11], |
| ).set_index(["a", "b"]) |
| |
| @property |
| def pdf6(self): |
| return pd.DataFrame( |
| { |
| "a": [9, 8, 7, 6, 5, 4, 3, 2, 1], |
| "b": [0, 0, 0, 4, 5, 6, 1, 2, 3], |
| "c": [9, 8, 7, 6, 5, 4, 3, 2, 1], |
| "e": [4, 5, 6, 3, 2, 1, 0, 0, 0], |
| }, |
| index=list(range(9)), |
| ).set_index(["a", "b"]) |
| |
| @property |
| def pser1(self): |
| midx = pd.MultiIndex( |
| [["lama", "cow", "falcon", "koala"], ["speed", "weight", "length", "power"]], |
| [[0, 3, 1, 1, 1, 2, 2, 2], [0, 2, 0, 3, 2, 0, 1, 3]], |
| ) |
| return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1], index=midx) |
| |
| @property |
| def pser2(self): |
| midx = pd.MultiIndex( |
| [["lama", "cow", "falcon"], ["speed", "weight", "length"]], |
| [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], |
| ) |
| return pd.Series([-45, 200, -1.2, 30, -250, 1.5, 320, 1, -0.3], index=midx) |
| |
| @property |
| def pser3(self): |
| midx = pd.MultiIndex( |
| [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], |
| [[0, 0, 0, 1, 1, 1, 2, 2, 2], [1, 1, 2, 0, 0, 2, 2, 2, 1]], |
| ) |
| return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) |
| |
| @property |
| def psdf1(self): |
| return ps.from_pandas(self.pdf1) |
| |
| @property |
| def psdf2(self): |
| return ps.from_pandas(self.pdf2) |
| |
| @property |
| def psdf3(self): |
| return ps.from_pandas(self.pdf3) |
| |
| @property |
| def psdf4(self): |
| return ps.from_pandas(self.pdf4) |
| |
| @property |
| def psdf5(self): |
| return ps.from_pandas(self.pdf5) |
| |
| @property |
| def psdf6(self): |
| return ps.from_pandas(self.pdf6) |
| |
| @classmethod |
| def setUpClass(cls): |
| super().setUpClass() |
| set_option("compute.ops_on_diff_frames", True) |
| |
| @classmethod |
| def tearDownClass(cls): |
| reset_option("compute.ops_on_diff_frames") |
| super().tearDownClass() |
| |
| def test_assignment_frame(self): |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psser = psdf.a |
| pser = pdf.a |
| psdf[["a", "b"]] = self.psdf1 |
| pdf[["a", "b"]] = self.pdf1 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| self.assert_eq(psser, pser) |
| |
| # 'c' does not exist in `psdf`. |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psser = psdf.a |
| pser = pdf.a |
| psdf[["b", "c"]] = self.psdf1 |
| pdf[["b", "c"]] = self.pdf1 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| self.assert_eq(psser, pser) |
| |
| # 'c' and 'd' do not exist in `psdf`. |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psdf[["c", "d"]] = self.psdf1 |
| pdf[["c", "d"]] = self.pdf1 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| # Multi-index columns |
| columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psdf.columns = columns |
| pdf.columns = columns |
| psdf[[("y", "c"), ("z", "d")]] = self.psdf1 |
| pdf[[("y", "c"), ("z", "d")]] = self.pdf1 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psdf1 = ps.from_pandas(self.pdf1) |
| pdf1 = self.pdf1 |
| psdf1.columns = columns |
| pdf1.columns = columns |
| psdf[["c", "d"]] = psdf1 |
| pdf[["c", "d"]] = pdf1 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| def test_assignment_frame_chain(self): |
| psdf = ps.from_pandas(self.pdf1) |
| pdf = self.pdf1 |
| psdf[["a", "b"]] = self.psdf1 |
| pdf[["a", "b"]] = self.pdf1 |
| |
| psdf[["e", "f"]] = self.psdf3 |
| pdf[["e", "f"]] = self.pdf3 |
| |
| psdf[["b", "c"]] = self.psdf2 |
| pdf[["b", "c"]] = self.pdf2 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| def test_multi_index_assignment_frame(self): |
| psdf = ps.from_pandas(self.pdf5) |
| pdf = self.pdf5 |
| psdf[["c"]] = self.psdf5 |
| pdf[["c"]] = self.pdf5 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| psdf = ps.from_pandas(self.pdf5) |
| pdf = self.pdf5 |
| psdf[["x"]] = self.psdf5 |
| pdf[["x"]] = self.pdf5 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| psdf = ps.from_pandas(self.pdf6) |
| pdf = self.pdf6 |
| psdf[["x", "y"]] = self.psdf6 |
| pdf[["x", "y"]] = self.pdf6 |
| |
| self.assert_eq(psdf.sort_index(), pdf.sort_index()) |
| |
| |
| class AssignFrameTests( |
| AssignFrameMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.diff_frames_ops.test_assign_frame import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |