blob: e6f2e78d7499dc10adad77d6e30f2f9974d13ae6 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas.config import set_option, reset_option
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class AssignFrameMixin:
@property
def pdf1(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=[0, 1, 3, 5, 6, 8, 9, 10, 11],
)
@property
def pdf2(self):
return pd.DataFrame(
{"a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3]},
index=list(range(9)),
)
@property
def pdf3(self):
return pd.DataFrame(
{"b": [1, 1, 1, 1, 1, 1, 1, 1, 1], "c": [1, 1, 1, 1, 1, 1, 1, 1, 1]},
index=list(range(9)),
)
@property
def pdf4(self):
return pd.DataFrame(
{"e": [2, 2, 2, 2, 2, 2, 2, 2, 2], "f": [2, 2, 2, 2, 2, 2, 2, 2, 2]},
index=list(range(9)),
)
@property
def pdf5(self):
return pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6, 7, 8, 9],
"b": [4, 5, 6, 3, 2, 1, 0, 0, 0],
"c": [4, 5, 6, 3, 2, 1, 0, 0, 0],
},
index=[0, 1, 3, 5, 6, 8, 9, 10, 11],
).set_index(["a", "b"])
@property
def pdf6(self):
return pd.DataFrame(
{
"a": [9, 8, 7, 6, 5, 4, 3, 2, 1],
"b": [0, 0, 0, 4, 5, 6, 1, 2, 3],
"c": [9, 8, 7, 6, 5, 4, 3, 2, 1],
"e": [4, 5, 6, 3, 2, 1, 0, 0, 0],
},
index=list(range(9)),
).set_index(["a", "b"])
@property
def pser1(self):
midx = pd.MultiIndex(
[["lama", "cow", "falcon", "koala"], ["speed", "weight", "length", "power"]],
[[0, 3, 1, 1, 1, 2, 2, 2], [0, 2, 0, 3, 2, 0, 1, 3]],
)
return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1], index=midx)
@property
def pser2(self):
midx = pd.MultiIndex(
[["lama", "cow", "falcon"], ["speed", "weight", "length"]],
[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
)
return pd.Series([-45, 200, -1.2, 30, -250, 1.5, 320, 1, -0.3], index=midx)
@property
def pser3(self):
midx = pd.MultiIndex(
[["koalas", "cow", "falcon"], ["speed", "weight", "length"]],
[[0, 0, 0, 1, 1, 1, 2, 2, 2], [1, 1, 2, 0, 0, 2, 2, 2, 1]],
)
return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx)
@property
def psdf1(self):
return ps.from_pandas(self.pdf1)
@property
def psdf2(self):
return ps.from_pandas(self.pdf2)
@property
def psdf3(self):
return ps.from_pandas(self.pdf3)
@property
def psdf4(self):
return ps.from_pandas(self.pdf4)
@property
def psdf5(self):
return ps.from_pandas(self.pdf5)
@property
def psdf6(self):
return ps.from_pandas(self.pdf6)
@classmethod
def setUpClass(cls):
super().setUpClass()
set_option("compute.ops_on_diff_frames", True)
@classmethod
def tearDownClass(cls):
reset_option("compute.ops_on_diff_frames")
super().tearDownClass()
def test_assignment_frame(self):
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psser = psdf.a
pser = pdf.a
psdf[["a", "b"]] = self.psdf1
pdf[["a", "b"]] = self.pdf1
self.assert_eq(psdf.sort_index(), pdf.sort_index())
self.assert_eq(psser, pser)
# 'c' does not exist in `psdf`.
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psser = psdf.a
pser = pdf.a
psdf[["b", "c"]] = self.psdf1
pdf[["b", "c"]] = self.pdf1
self.assert_eq(psdf.sort_index(), pdf.sort_index())
self.assert_eq(psser, pser)
# 'c' and 'd' do not exist in `psdf`.
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psdf[["c", "d"]] = self.psdf1
pdf[["c", "d"]] = self.pdf1
self.assert_eq(psdf.sort_index(), pdf.sort_index())
# Multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")])
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psdf.columns = columns
pdf.columns = columns
psdf[[("y", "c"), ("z", "d")]] = self.psdf1
pdf[[("y", "c"), ("z", "d")]] = self.pdf1
self.assert_eq(psdf.sort_index(), pdf.sort_index())
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psdf1 = ps.from_pandas(self.pdf1)
pdf1 = self.pdf1
psdf1.columns = columns
pdf1.columns = columns
psdf[["c", "d"]] = psdf1
pdf[["c", "d"]] = pdf1
self.assert_eq(psdf.sort_index(), pdf.sort_index())
def test_assignment_frame_chain(self):
psdf = ps.from_pandas(self.pdf1)
pdf = self.pdf1
psdf[["a", "b"]] = self.psdf1
pdf[["a", "b"]] = self.pdf1
psdf[["e", "f"]] = self.psdf3
pdf[["e", "f"]] = self.pdf3
psdf[["b", "c"]] = self.psdf2
pdf[["b", "c"]] = self.pdf2
self.assert_eq(psdf.sort_index(), pdf.sort_index())
def test_multi_index_assignment_frame(self):
psdf = ps.from_pandas(self.pdf5)
pdf = self.pdf5
psdf[["c"]] = self.psdf5
pdf[["c"]] = self.pdf5
self.assert_eq(psdf.sort_index(), pdf.sort_index())
psdf = ps.from_pandas(self.pdf5)
pdf = self.pdf5
psdf[["x"]] = self.psdf5
pdf[["x"]] = self.pdf5
self.assert_eq(psdf.sort_index(), pdf.sort_index())
psdf = ps.from_pandas(self.pdf6)
pdf = self.pdf6
psdf[["x", "y"]] = self.psdf6
pdf[["x", "y"]] = self.pdf6
self.assert_eq(psdf.sort_index(), pdf.sort_index())
class AssignFrameTests(
AssignFrameMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.diff_frames_ops.test_assign_frame import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)