| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| from pyspark.sql.functions import spark_partition_id |
| from pyspark.sql.types import ( |
| StringType, |
| IntegerType, |
| DoubleType, |
| StructType, |
| StructField, |
| ) |
| from pyspark.errors import PySparkTypeError |
| from pyspark.testing.sqlutils import ReusedSQLTestCase |
| |
| |
| class DataFrameRepartitionTestsMixin: |
| def test_repartition(self): |
| df = self.spark.createDataFrame([(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) |
| with self.assertRaises(PySparkTypeError) as pe: |
| df.repartition([10], "name", "age").rdd.getNumPartitions() |
| |
| self.check_error( |
| exception=pe.exception, |
| errorClass="NOT_COLUMN_OR_STR", |
| messageParameters={"arg_name": "numPartitions", "arg_type": "list"}, |
| ) |
| |
| def test_repartition_by_range(self): |
| schema = StructType( |
| [ |
| StructField("name", StringType(), True), |
| StructField("age", IntegerType(), True), |
| StructField("height", DoubleType(), True), |
| ] |
| ) |
| |
| df1 = self.spark.createDataFrame( |
| [("Bob", 27, 66.0), ("Alice", 10, 10.0), ("Bob", 10, 66.0)], schema |
| ) |
| df2 = self.spark.createDataFrame( |
| [("Alice", 10, 10.0), ("Bob", 10, 66.0), ("Bob", 27, 66.0)], schema |
| ) |
| |
| # test repartitionByRange(numPartitions, *cols) |
| df3 = df1.repartitionByRange(2, "name", "age") |
| |
| self.assertEqual(df3.select(spark_partition_id()).distinct().count(), 2) |
| self.assertEqual(df3.first(), df2.first()) |
| self.assertEqual(df3.take(3), df2.take(3)) |
| |
| # test repartitionByRange(numPartitions, *cols) |
| df4 = df1.repartitionByRange(3, "name", "age") |
| self.assertEqual(df4.select(spark_partition_id()).distinct().count(), 3) |
| self.assertEqual(df4.first(), df2.first()) |
| self.assertEqual(df4.take(3), df2.take(3)) |
| |
| # test repartitionByRange(*cols) |
| df5 = df1.repartitionByRange(5, "name", "age") |
| self.assertEqual(df5.first(), df2.first()) |
| self.assertEqual(df5.take(3), df2.take(3)) |
| |
| with self.assertRaises(PySparkTypeError) as pe: |
| df1.repartitionByRange([10], "name", "age") |
| |
| self.check_error( |
| exception=pe.exception, |
| errorClass="NOT_COLUMN_OR_INT_OR_STR", |
| messageParameters={"arg_name": "numPartitions", "arg_type": "list"}, |
| ) |
| |
| |
| class DataFrameRepartitionTests( |
| DataFrameRepartitionTestsMixin, |
| ReusedSQLTestCase, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.test_repartition import * # noqa: F401 |
| |
| try: |
| import xmlrunner # type: ignore |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |