| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import functools |
| import pydoc |
| import shutil |
| import tempfile |
| import unittest |
| |
| from pyspark import SparkContext |
| from pyspark.sql import SparkSession, Column, Row |
| from pyspark.sql.functions import udf |
| from pyspark.sql.udf import UserDefinedFunction |
| from pyspark.sql.types import StringType, IntegerType, BooleanType, DoubleType, LongType, \ |
| ArrayType, StructType, StructField |
| from pyspark.sql.utils import AnalysisException |
| from pyspark.testing.sqlutils import ReusedSQLTestCase, test_compiled, test_not_compiled_message |
| from pyspark.testing.utils import QuietTest |
| |
| |
| class UDFTests(ReusedSQLTestCase): |
| |
| def test_udf_with_callable(self): |
| d = [Row(number=i, squared=i**2) for i in range(10)] |
| rdd = self.sc.parallelize(d) |
| data = self.spark.createDataFrame(rdd) |
| |
| class PlusFour: |
| def __call__(self, col): |
| if col is not None: |
| return col + 4 |
| |
| call = PlusFour() |
| pudf = UserDefinedFunction(call, LongType()) |
| res = data.select(pudf(data['number']).alias('plus_four')) |
| self.assertEqual(res.agg({'plus_four': 'sum'}).collect()[0][0], 85) |
| |
| def test_udf_with_partial_function(self): |
| d = [Row(number=i, squared=i**2) for i in range(10)] |
| rdd = self.sc.parallelize(d) |
| data = self.spark.createDataFrame(rdd) |
| |
| def some_func(col, param): |
| if col is not None: |
| return col + param |
| |
| pfunc = functools.partial(some_func, param=4) |
| pudf = UserDefinedFunction(pfunc, LongType()) |
| res = data.select(pudf(data['number']).alias('plus_four')) |
| self.assertEqual(res.agg({'plus_four': 'sum'}).collect()[0][0], 85) |
| |
| def test_udf(self): |
| self.spark.catalog.registerFunction("twoArgs", lambda x, y: len(x) + y, IntegerType()) |
| [row] = self.spark.sql("SELECT twoArgs('test', 1)").collect() |
| self.assertEqual(row[0], 5) |
| |
| # This is to check if a deprecated 'SQLContext.registerFunction' can call its alias. |
| sqlContext = self.spark._wrapped |
| sqlContext.registerFunction("oneArg", lambda x: len(x), IntegerType()) |
| [row] = sqlContext.sql("SELECT oneArg('test')").collect() |
| self.assertEqual(row[0], 4) |
| |
| def test_udf2(self): |
| with self.tempView("test"): |
| self.spark.catalog.registerFunction("strlen", lambda string: len(string), IntegerType()) |
| self.spark.createDataFrame(self.sc.parallelize([Row(a="test")]))\ |
| .createOrReplaceTempView("test") |
| [res] = self.spark.sql("SELECT strlen(a) FROM test WHERE strlen(a) > 1").collect() |
| self.assertEqual(4, res[0]) |
| |
| def test_udf3(self): |
| two_args = self.spark.catalog.registerFunction( |
| "twoArgs", UserDefinedFunction(lambda x, y: len(x) + y)) |
| self.assertEqual(two_args.deterministic, True) |
| [row] = self.spark.sql("SELECT twoArgs('test', 1)").collect() |
| self.assertEqual(row[0], u'5') |
| |
| def test_udf_registration_return_type_none(self): |
| two_args = self.spark.catalog.registerFunction( |
| "twoArgs", UserDefinedFunction(lambda x, y: len(x) + y, "integer"), None) |
| self.assertEqual(two_args.deterministic, True) |
| [row] = self.spark.sql("SELECT twoArgs('test', 1)").collect() |
| self.assertEqual(row[0], 5) |
| |
| def test_udf_registration_return_type_not_none(self): |
| with QuietTest(self.sc): |
| with self.assertRaisesRegex(TypeError, "Invalid return type"): |
| self.spark.catalog.registerFunction( |
| "f", UserDefinedFunction(lambda x, y: len(x) + y, StringType()), StringType()) |
| |
| def test_nondeterministic_udf(self): |
| # Test that nondeterministic UDFs are evaluated only once in chained UDF evaluations |
| import random |
| udf_random_col = udf(lambda: int(100 * random.random()), IntegerType()).asNondeterministic() |
| self.assertEqual(udf_random_col.deterministic, False) |
| df = self.spark.createDataFrame([Row(1)]).select(udf_random_col().alias('RAND')) |
| udf_add_ten = udf(lambda rand: rand + 10, IntegerType()) |
| [row] = df.withColumn('RAND_PLUS_TEN', udf_add_ten('RAND')).collect() |
| self.assertEqual(row[0] + 10, row[1]) |
| |
| def test_nondeterministic_udf2(self): |
| import random |
| random_udf = udf(lambda: random.randint(6, 6), IntegerType()).asNondeterministic() |
| self.assertEqual(random_udf.deterministic, False) |
| random_udf1 = self.spark.catalog.registerFunction("randInt", random_udf) |
| self.assertEqual(random_udf1.deterministic, False) |
| [row] = self.spark.sql("SELECT randInt()").collect() |
| self.assertEqual(row[0], 6) |
| [row] = self.spark.range(1).select(random_udf1()).collect() |
| self.assertEqual(row[0], 6) |
| [row] = self.spark.range(1).select(random_udf()).collect() |
| self.assertEqual(row[0], 6) |
| # render_doc() reproduces the help() exception without printing output |
| pydoc.render_doc(udf(lambda: random.randint(6, 6), IntegerType())) |
| pydoc.render_doc(random_udf) |
| pydoc.render_doc(random_udf1) |
| pydoc.render_doc(udf(lambda x: x).asNondeterministic) |
| |
| def test_nondeterministic_udf3(self): |
| # regression test for SPARK-23233 |
| f = udf(lambda x: x) |
| # Here we cache the JVM UDF instance. |
| self.spark.range(1).select(f("id")) |
| # This should reset the cache to set the deterministic status correctly. |
| f = f.asNondeterministic() |
| # Check the deterministic status of udf. |
| df = self.spark.range(1).select(f("id")) |
| deterministic = df._jdf.logicalPlan().projectList().head().deterministic() |
| self.assertFalse(deterministic) |
| |
| def test_nondeterministic_udf_in_aggregate(self): |
| from pyspark.sql.functions import sum |
| import random |
| udf_random_col = udf(lambda: int(100 * random.random()), 'int').asNondeterministic() |
| df = self.spark.range(10) |
| |
| with QuietTest(self.sc): |
| with self.assertRaisesRegex(AnalysisException, "nondeterministic"): |
| df.groupby('id').agg(sum(udf_random_col())).collect() |
| with self.assertRaisesRegex(AnalysisException, "nondeterministic"): |
| df.agg(sum(udf_random_col())).collect() |
| |
| def test_chained_udf(self): |
| self.spark.catalog.registerFunction("double", lambda x: x + x, IntegerType()) |
| [row] = self.spark.sql("SELECT double(1)").collect() |
| self.assertEqual(row[0], 2) |
| [row] = self.spark.sql("SELECT double(double(1))").collect() |
| self.assertEqual(row[0], 4) |
| [row] = self.spark.sql("SELECT double(double(1) + 1)").collect() |
| self.assertEqual(row[0], 6) |
| |
| def test_single_udf_with_repeated_argument(self): |
| # regression test for SPARK-20685 |
| self.spark.catalog.registerFunction("add", lambda x, y: x + y, IntegerType()) |
| row = self.spark.sql("SELECT add(1, 1)").first() |
| self.assertEqual(tuple(row), (2, )) |
| |
| def test_multiple_udfs(self): |
| self.spark.catalog.registerFunction("double", lambda x: x * 2, IntegerType()) |
| [row] = self.spark.sql("SELECT double(1), double(2)").collect() |
| self.assertEqual(tuple(row), (2, 4)) |
| [row] = self.spark.sql("SELECT double(double(1)), double(double(2) + 2)").collect() |
| self.assertEqual(tuple(row), (4, 12)) |
| self.spark.catalog.registerFunction("add", lambda x, y: x + y, IntegerType()) |
| [row] = self.spark.sql("SELECT double(add(1, 2)), add(double(2), 1)").collect() |
| self.assertEqual(tuple(row), (6, 5)) |
| |
| def test_udf_in_filter_on_top_of_outer_join(self): |
| left = self.spark.createDataFrame([Row(a=1)]) |
| right = self.spark.createDataFrame([Row(a=1)]) |
| df = left.join(right, on='a', how='left_outer') |
| df = df.withColumn('b', udf(lambda x: 'x')(df.a)) |
| self.assertEqual(df.filter('b = "x"').collect(), [Row(a=1, b='x')]) |
| |
| def test_udf_in_filter_on_top_of_join(self): |
| # regression test for SPARK-18589 |
| left = self.spark.createDataFrame([Row(a=1)]) |
| right = self.spark.createDataFrame([Row(b=1)]) |
| f = udf(lambda a, b: a == b, BooleanType()) |
| df = left.crossJoin(right).filter(f("a", "b")) |
| self.assertEqual(df.collect(), [Row(a=1, b=1)]) |
| |
| def test_udf_in_join_condition(self): |
| # regression test for SPARK-25314 |
| left = self.spark.createDataFrame([Row(a=1)]) |
| right = self.spark.createDataFrame([Row(b=1)]) |
| f = udf(lambda a, b: a == b, BooleanType()) |
| # The udf uses attributes from both sides of join, so it is pulled out as Filter + |
| # Cross join. |
| df = left.join(right, f("a", "b")) |
| with self.sql_conf({"spark.sql.crossJoin.enabled": False}): |
| with self.assertRaisesRegex(AnalysisException, 'Detected implicit cartesian product'): |
| df.collect() |
| with self.sql_conf({"spark.sql.crossJoin.enabled": True}): |
| self.assertEqual(df.collect(), [Row(a=1, b=1)]) |
| |
| def test_udf_in_left_outer_join_condition(self): |
| # regression test for SPARK-26147 |
| from pyspark.sql.functions import col |
| left = self.spark.createDataFrame([Row(a=1)]) |
| right = self.spark.createDataFrame([Row(b=1)]) |
| f = udf(lambda a: str(a), StringType()) |
| # The join condition can't be pushed down, as it refers to attributes from both sides. |
| # The Python UDF only refer to attributes from one side, so it's evaluable. |
| df = left.join(right, f("a") == col("b").cast("string"), how="left_outer") |
| with self.sql_conf({"spark.sql.crossJoin.enabled": True}): |
| self.assertEqual(df.collect(), [Row(a=1, b=1)]) |
| |
| def test_udf_and_common_filter_in_join_condition(self): |
| # regression test for SPARK-25314 |
| # test the complex scenario with both udf and common filter |
| left = self.spark.createDataFrame([Row(a=1, a1=1, a2=1), Row(a=2, a1=2, a2=2)]) |
| right = self.spark.createDataFrame([Row(b=1, b1=1, b2=1), Row(b=1, b1=3, b2=1)]) |
| f = udf(lambda a, b: a == b, BooleanType()) |
| df = left.join(right, [f("a", "b"), left.a1 == right.b1]) |
| # do not need spark.sql.crossJoin.enabled=true for udf is not the only join condition. |
| self.assertEqual(df.collect(), [Row(a=1, a1=1, a2=1, b=1, b1=1, b2=1)]) |
| |
| def test_udf_not_supported_in_join_condition(self): |
| # regression test for SPARK-25314 |
| # test python udf is not supported in join type except inner join. |
| left = self.spark.createDataFrame([Row(a=1, a1=1, a2=1), Row(a=2, a1=2, a2=2)]) |
| right = self.spark.createDataFrame([Row(b=1, b1=1, b2=1), Row(b=1, b1=3, b2=1)]) |
| f = udf(lambda a, b: a == b, BooleanType()) |
| |
| def runWithJoinType(join_type, type_string): |
| with self.assertRaisesRegex( |
| AnalysisException, |
| 'Using PythonUDF.*%s is not supported.' % type_string): |
| left.join(right, [f("a", "b"), left.a1 == right.b1], join_type).collect() |
| runWithJoinType("full", "FullOuter") |
| runWithJoinType("left", "LeftOuter") |
| runWithJoinType("right", "RightOuter") |
| runWithJoinType("leftanti", "LeftAnti") |
| runWithJoinType("leftsemi", "LeftSemi") |
| |
| def test_udf_as_join_condition(self): |
| left = self.spark.createDataFrame([Row(a=1, a1=1, a2=1), Row(a=2, a1=2, a2=2)]) |
| right = self.spark.createDataFrame([Row(b=1, b1=1, b2=1), Row(b=1, b1=3, b2=1)]) |
| f = udf(lambda a: a, IntegerType()) |
| |
| df = left.join(right, [f("a") == f("b"), left.a1 == right.b1]) |
| self.assertEqual(df.collect(), [Row(a=1, a1=1, a2=1, b=1, b1=1, b2=1)]) |
| |
| def test_udf_without_arguments(self): |
| self.spark.catalog.registerFunction("foo", lambda: "bar") |
| [row] = self.spark.sql("SELECT foo()").collect() |
| self.assertEqual(row[0], "bar") |
| |
| def test_udf_with_array_type(self): |
| with self.tempView("test"): |
| d = [Row(l=list(range(3)), d={"key": list(range(5))})] |
| rdd = self.sc.parallelize(d) |
| self.spark.createDataFrame(rdd).createOrReplaceTempView("test") |
| self.spark.catalog.registerFunction( |
| "copylist", lambda l: list(l), ArrayType(IntegerType())) |
| self.spark.catalog.registerFunction("maplen", lambda d: len(d), IntegerType()) |
| [(l1, l2)] = self.spark.sql("select copylist(l), maplen(d) from test").collect() |
| self.assertEqual(list(range(3)), l1) |
| self.assertEqual(1, l2) |
| |
| def test_broadcast_in_udf(self): |
| bar = {"a": "aa", "b": "bb", "c": "abc"} |
| foo = self.sc.broadcast(bar) |
| self.spark.catalog.registerFunction("MYUDF", lambda x: foo.value[x] if x else '') |
| [res] = self.spark.sql("SELECT MYUDF('c')").collect() |
| self.assertEqual("abc", res[0]) |
| [res] = self.spark.sql("SELECT MYUDF('')").collect() |
| self.assertEqual("", res[0]) |
| |
| def test_udf_with_filter_function(self): |
| df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"]) |
| from pyspark.sql.functions import col |
| |
| my_filter = udf(lambda a: a < 2, BooleanType()) |
| sel = df.select(col("key"), col("value")).filter((my_filter(col("key"))) & (df.value < "2")) |
| self.assertEqual(sel.collect(), [Row(key=1, value='1')]) |
| |
| def test_udf_with_aggregate_function(self): |
| df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"]) |
| from pyspark.sql.functions import col, sum |
| |
| my_filter = udf(lambda a: a == 1, BooleanType()) |
| sel = df.select(col("key")).distinct().filter(my_filter(col("key"))) |
| self.assertEqual(sel.collect(), [Row(key=1)]) |
| |
| my_copy = udf(lambda x: x, IntegerType()) |
| my_add = udf(lambda a, b: int(a + b), IntegerType()) |
| my_strlen = udf(lambda x: len(x), IntegerType()) |
| sel = df.groupBy(my_copy(col("key")).alias("k"))\ |
| .agg(sum(my_strlen(col("value"))).alias("s"))\ |
| .select(my_add(col("k"), col("s")).alias("t")) |
| self.assertEqual(sel.collect(), [Row(t=4), Row(t=3)]) |
| |
| def test_udf_in_generate(self): |
| from pyspark.sql.functions import explode |
| df = self.spark.range(5) |
| f = udf(lambda x: list(range(x)), ArrayType(LongType())) |
| row = df.select(explode(f(*df))).groupBy().sum().first() |
| self.assertEqual(row[0], 10) |
| |
| df = self.spark.range(3) |
| res = df.select("id", explode(f(df.id))).collect() |
| self.assertEqual(res[0][0], 1) |
| self.assertEqual(res[0][1], 0) |
| self.assertEqual(res[1][0], 2) |
| self.assertEqual(res[1][1], 0) |
| self.assertEqual(res[2][0], 2) |
| self.assertEqual(res[2][1], 1) |
| |
| range_udf = udf(lambda value: list(range(value - 1, value + 1)), ArrayType(IntegerType())) |
| res = df.select("id", explode(range_udf(df.id))).collect() |
| self.assertEqual(res[0][0], 0) |
| self.assertEqual(res[0][1], -1) |
| self.assertEqual(res[1][0], 0) |
| self.assertEqual(res[1][1], 0) |
| self.assertEqual(res[2][0], 1) |
| self.assertEqual(res[2][1], 0) |
| self.assertEqual(res[3][0], 1) |
| self.assertEqual(res[3][1], 1) |
| |
| def test_udf_with_order_by_and_limit(self): |
| my_copy = udf(lambda x: x, IntegerType()) |
| df = self.spark.range(10).orderBy("id") |
| res = df.select(df.id, my_copy(df.id).alias("copy")).limit(1) |
| self.assertEqual(res.collect(), [Row(id=0, copy=0)]) |
| |
| def test_udf_registration_returns_udf(self): |
| df = self.spark.range(10) |
| add_three = self.spark.udf.register("add_three", lambda x: x + 3, IntegerType()) |
| |
| self.assertListEqual( |
| df.selectExpr("add_three(id) AS plus_three").collect(), |
| df.select(add_three("id").alias("plus_three")).collect() |
| ) |
| |
| # This is to check if a 'SQLContext.udf' can call its alias. |
| sqlContext = self.spark._wrapped |
| add_four = sqlContext.udf.register("add_four", lambda x: x + 4, IntegerType()) |
| |
| self.assertListEqual( |
| df.selectExpr("add_four(id) AS plus_four").collect(), |
| df.select(add_four("id").alias("plus_four")).collect() |
| ) |
| |
| @unittest.skipIf(not test_compiled, test_not_compiled_message) # type: ignore |
| def test_register_java_function(self): |
| self.spark.udf.registerJavaFunction( |
| "javaStringLength", "test.org.apache.spark.sql.JavaStringLength", IntegerType()) |
| [value] = self.spark.sql("SELECT javaStringLength('test')").first() |
| self.assertEqual(value, 4) |
| |
| self.spark.udf.registerJavaFunction( |
| "javaStringLength2", "test.org.apache.spark.sql.JavaStringLength") |
| [value] = self.spark.sql("SELECT javaStringLength2('test')").first() |
| self.assertEqual(value, 4) |
| |
| self.spark.udf.registerJavaFunction( |
| "javaStringLength3", "test.org.apache.spark.sql.JavaStringLength", "integer") |
| [value] = self.spark.sql("SELECT javaStringLength3('test')").first() |
| self.assertEqual(value, 4) |
| |
| @unittest.skipIf(not test_compiled, test_not_compiled_message) # type: ignore |
| def test_register_java_udaf(self): |
| self.spark.udf.registerJavaUDAF("javaUDAF", "test.org.apache.spark.sql.MyDoubleAvg") |
| df = self.spark.createDataFrame([(1, "a"), (2, "b"), (3, "a")], ["id", "name"]) |
| df.createOrReplaceTempView("df") |
| row = self.spark.sql( |
| "SELECT name, javaUDAF(id) as avg from df group by name order by name desc").first() |
| self.assertEqual(row.asDict(), Row(name='b', avg=102.0).asDict()) |
| |
| def test_non_existed_udf(self): |
| spark = self.spark |
| self.assertRaisesRegex(AnalysisException, "Can not load class non_existed_udf", |
| lambda: spark.udf.registerJavaFunction("udf1", "non_existed_udf")) |
| |
| # This is to check if a deprecated 'SQLContext.registerJavaFunction' can call its alias. |
| sqlContext = spark._wrapped |
| self.assertRaisesRegex(AnalysisException, "Can not load class non_existed_udf", |
| lambda: sqlContext.registerJavaFunction("udf1", "non_existed_udf")) |
| |
| def test_non_existed_udaf(self): |
| spark = self.spark |
| self.assertRaisesRegex(AnalysisException, "Can not load class non_existed_udaf", |
| lambda: spark.udf.registerJavaUDAF("udaf1", "non_existed_udaf")) |
| |
| def test_udf_with_input_file_name(self): |
| from pyspark.sql.functions import input_file_name |
| sourceFile = udf(lambda path: path, StringType()) |
| filePath = "python/test_support/sql/people1.json" |
| row = self.spark.read.json(filePath).select(sourceFile(input_file_name())).first() |
| self.assertTrue(row[0].find("people1.json") != -1) |
| |
| def test_udf_with_input_file_name_for_hadooprdd(self): |
| from pyspark.sql.functions import input_file_name |
| |
| def filename(path): |
| return path |
| |
| sameText = udf(filename, StringType()) |
| |
| rdd = self.sc.textFile('python/test_support/sql/people.json') |
| df = self.spark.read.json(rdd).select(input_file_name().alias('file')) |
| row = df.select(sameText(df['file'])).first() |
| self.assertTrue(row[0].find("people.json") != -1) |
| |
| rdd2 = self.sc.newAPIHadoopFile( |
| 'python/test_support/sql/people.json', |
| 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat', |
| 'org.apache.hadoop.io.LongWritable', |
| 'org.apache.hadoop.io.Text') |
| |
| df2 = self.spark.read.json(rdd2).select(input_file_name().alias('file')) |
| row2 = df2.select(sameText(df2['file'])).first() |
| self.assertTrue(row2[0].find("people.json") != -1) |
| |
| def test_udf_defers_judf_initialization(self): |
| # This is separate of UDFInitializationTests |
| # to avoid context initialization |
| # when udf is called |
| f = UserDefinedFunction(lambda x: x, StringType()) |
| |
| self.assertIsNone( |
| f._judf_placeholder, |
| "judf should not be initialized before the first call." |
| ) |
| |
| self.assertIsInstance(f("foo"), Column, "UDF call should return a Column.") |
| |
| self.assertIsNotNone( |
| f._judf_placeholder, |
| "judf should be initialized after UDF has been called." |
| ) |
| |
| def test_udf_with_string_return_type(self): |
| add_one = UserDefinedFunction(lambda x: x + 1, "integer") |
| make_pair = UserDefinedFunction(lambda x: (-x, x), "struct<x:integer,y:integer>") |
| make_array = UserDefinedFunction( |
| lambda x: [float(x) for x in range(x, x + 3)], "array<double>") |
| |
| expected = (2, Row(x=-1, y=1), [1.0, 2.0, 3.0]) |
| actual = (self.spark.range(1, 2).toDF("x") |
| .select(add_one("x"), make_pair("x"), make_array("x")) |
| .first()) |
| |
| self.assertTupleEqual(expected, actual) |
| |
| def test_udf_should_not_accept_noncallable_object(self): |
| non_callable = None |
| self.assertRaises(TypeError, UserDefinedFunction, non_callable, StringType()) |
| |
| def test_udf_with_decorator(self): |
| from pyspark.sql.functions import lit |
| |
| @udf(IntegerType()) |
| def add_one(x): |
| if x is not None: |
| return x + 1 |
| |
| @udf(returnType=DoubleType()) |
| def add_two(x): |
| if x is not None: |
| return float(x + 2) |
| |
| @udf |
| def to_upper(x): |
| if x is not None: |
| return x.upper() |
| |
| @udf() |
| def to_lower(x): |
| if x is not None: |
| return x.lower() |
| |
| @udf |
| def substr(x, start, end): |
| if x is not None: |
| return x[start:end] |
| |
| @udf("long") |
| def trunc(x): |
| return int(x) |
| |
| @udf(returnType="double") |
| def as_double(x): |
| return float(x) |
| |
| df = ( |
| self.spark |
| .createDataFrame( |
| [(1, "Foo", "foobar", 3.0)], ("one", "Foo", "foobar", "float")) |
| .select( |
| add_one("one"), add_two("one"), |
| to_upper("Foo"), to_lower("Foo"), |
| substr("foobar", lit(0), lit(3)), |
| trunc("float"), as_double("one"))) |
| |
| self.assertListEqual( |
| [tpe for _, tpe in df.dtypes], |
| ["int", "double", "string", "string", "string", "bigint", "double"] |
| ) |
| |
| self.assertListEqual( |
| list(df.first()), |
| [2, 3.0, "FOO", "foo", "foo", 3, 1.0] |
| ) |
| |
| def test_udf_wrapper(self): |
| def f(x): |
| """Identity""" |
| return x |
| |
| return_type = IntegerType() |
| f_ = udf(f, return_type) |
| |
| self.assertTrue(f.__doc__ in f_.__doc__) |
| self.assertEqual(f, f_.func) |
| self.assertEqual(return_type, f_.returnType) |
| |
| class F(object): |
| """Identity""" |
| def __call__(self, x): |
| return x |
| |
| f = F() |
| return_type = IntegerType() |
| f_ = udf(f, return_type) |
| |
| self.assertTrue(f.__doc__ in f_.__doc__) |
| self.assertEqual(f, f_.func) |
| self.assertEqual(return_type, f_.returnType) |
| |
| f = functools.partial(f, x=1) |
| return_type = IntegerType() |
| f_ = udf(f, return_type) |
| |
| self.assertTrue(f.__doc__ in f_.__doc__) |
| self.assertEqual(f, f_.func) |
| self.assertEqual(return_type, f_.returnType) |
| |
| def test_nonparam_udf_with_aggregate(self): |
| import pyspark.sql.functions as f |
| |
| df = self.spark.createDataFrame([(1, 2), (1, 2)]) |
| f_udf = f.udf(lambda: "const_str") |
| rows = df.distinct().withColumn("a", f_udf()).collect() |
| self.assertEqual(rows, [Row(_1=1, _2=2, a=u'const_str')]) |
| |
| # SPARK-24721 |
| @unittest.skipIf(not test_compiled, test_not_compiled_message) # type: ignore |
| def test_datasource_with_udf(self): |
| from pyspark.sql.functions import lit, col |
| |
| path = tempfile.mkdtemp() |
| shutil.rmtree(path) |
| |
| try: |
| self.spark.range(1).write.mode("overwrite").format('csv').save(path) |
| filesource_df = self.spark.read.option('inferSchema', True).csv(path).toDF('i') |
| datasource_df = self.spark.read \ |
| .format("org.apache.spark.sql.sources.SimpleScanSource") \ |
| .option('from', 0).option('to', 1).load().toDF('i') |
| datasource_v2_df = self.spark.read \ |
| .format("org.apache.spark.sql.connector.SimpleDataSourceV2") \ |
| .load().toDF('i', 'j') |
| |
| c1 = udf(lambda x: x + 1, 'int')(lit(1)) |
| c2 = udf(lambda x: x + 1, 'int')(col('i')) |
| |
| f1 = udf(lambda x: False, 'boolean')(lit(1)) |
| f2 = udf(lambda x: False, 'boolean')(col('i')) |
| |
| for df in [filesource_df, datasource_df, datasource_v2_df]: |
| result = df.withColumn('c', c1) |
| expected = df.withColumn('c', lit(2)) |
| self.assertEqual(expected.collect(), result.collect()) |
| |
| for df in [filesource_df, datasource_df, datasource_v2_df]: |
| result = df.withColumn('c', c2) |
| expected = df.withColumn('c', col('i') + 1) |
| self.assertEqual(expected.collect(), result.collect()) |
| |
| for df in [filesource_df, datasource_df, datasource_v2_df]: |
| for f in [f1, f2]: |
| result = df.filter(f) |
| self.assertEqual(0, result.count()) |
| finally: |
| shutil.rmtree(path) |
| |
| # SPARK-25591 |
| def test_same_accumulator_in_udfs(self): |
| data_schema = StructType([StructField("a", IntegerType(), True), |
| StructField("b", IntegerType(), True)]) |
| data = self.spark.createDataFrame([[1, 2]], schema=data_schema) |
| |
| test_accum = self.sc.accumulator(0) |
| |
| def first_udf(x): |
| test_accum.add(1) |
| return x |
| |
| def second_udf(x): |
| test_accum.add(100) |
| return x |
| |
| func_udf = udf(first_udf, IntegerType()) |
| func_udf2 = udf(second_udf, IntegerType()) |
| data = data.withColumn("out1", func_udf(data["a"])) |
| data = data.withColumn("out2", func_udf2(data["b"])) |
| data.collect() |
| self.assertEqual(test_accum.value, 101) |
| |
| # SPARK-26293 |
| def test_udf_in_subquery(self): |
| f = udf(lambda x: x, "long") |
| with self.tempView("v"): |
| self.spark.range(1).filter(f("id") >= 0).createTempView("v") |
| sql = self.spark.sql |
| result = sql("select i from values(0L) as data(i) where i in (select id from v)") |
| self.assertEqual(result.collect(), [Row(i=0)]) |
| |
| def test_udf_globals_not_overwritten(self): |
| @udf('string') |
| def f(): |
| assert "itertools" not in str(map) |
| |
| self.spark.range(1).select(f()).collect() |
| |
| def test_worker_original_stdin_closed(self): |
| # Test if it closes the original standard input of worker inherited from the daemon, |
| # and replaces it with '/dev/null'. See SPARK-26175. |
| def task(iterator): |
| import sys |
| res = sys.stdin.read() |
| # Because the standard input is '/dev/null', it reaches to EOF. |
| assert res == '', "Expect read EOF from stdin." |
| return iterator |
| |
| self.sc.parallelize(range(1), 1).mapPartitions(task).count() |
| |
| def test_udf_with_256_args(self): |
| N = 256 |
| data = [["data-%d" % i for i in range(N)]] * 5 |
| df = self.spark.createDataFrame(data) |
| |
| def f(*a): |
| return "success" |
| |
| fUdf = udf(f, StringType()) |
| |
| r = df.select(fUdf(*df.columns)) |
| self.assertEqual(r.first()[0], "success") |
| |
| def test_udf_cache(self): |
| func = lambda x: x |
| |
| df = self.spark.range(1) |
| df.select(udf(func)("id")).cache() |
| |
| self.assertEqual(df.select(udf(func)("id"))._jdf.queryExecution() |
| .withCachedData().getClass().getSimpleName(), 'InMemoryRelation') |
| |
| |
| class UDFInitializationTests(unittest.TestCase): |
| def tearDown(self): |
| if SparkSession._instantiatedSession is not None: |
| SparkSession._instantiatedSession.stop() |
| |
| if SparkContext._active_spark_context is not None: |
| SparkContext._active_spark_context.stop() |
| |
| def test_udf_init_should_not_initialize_context(self): |
| UserDefinedFunction(lambda x: x, StringType()) |
| |
| self.assertIsNone( |
| SparkContext._active_spark_context, |
| "SparkContext shouldn't be initialized when UserDefinedFunction is created." |
| ) |
| self.assertIsNone( |
| SparkSession._instantiatedSession, |
| "SparkSession shouldn't be initialized when UserDefinedFunction is created." |
| ) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.test_udf import * # noqa: F401 |
| |
| try: |
| import xmlrunner # type: ignore |
| testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |