| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from pyspark.sql.types import StructType, StructField, IntegerType |
| from pyspark.sql.utils import AnalysisException |
| from pyspark.testing.sqlutils import ReusedSQLTestCase |
| |
| |
| class CatalogTests(ReusedSQLTestCase): |
| |
| def test_current_database(self): |
| spark = self.spark |
| with self.database("some_db"): |
| self.assertEqual(spark.catalog.currentDatabase(), "default") |
| spark.sql("CREATE DATABASE some_db") |
| spark.catalog.setCurrentDatabase("some_db") |
| self.assertEqual(spark.catalog.currentDatabase(), "some_db") |
| self.assertRaisesRegex( |
| AnalysisException, |
| "does_not_exist", |
| lambda: spark.catalog.setCurrentDatabase("does_not_exist")) |
| |
| def test_list_databases(self): |
| spark = self.spark |
| with self.database("some_db"): |
| databases = [db.name for db in spark.catalog.listDatabases()] |
| self.assertEqual(databases, ["default"]) |
| spark.sql("CREATE DATABASE some_db") |
| databases = [db.name for db in spark.catalog.listDatabases()] |
| self.assertEqual(sorted(databases), ["default", "some_db"]) |
| |
| def test_list_tables(self): |
| from pyspark.sql.catalog import Table |
| spark = self.spark |
| with self.database("some_db"): |
| spark.sql("CREATE DATABASE some_db") |
| with self.table("tab1", "some_db.tab2", "tab3_via_catalog"): |
| with self.tempView("temp_tab"): |
| self.assertEqual(spark.catalog.listTables(), []) |
| self.assertEqual(spark.catalog.listTables("some_db"), []) |
| spark.createDataFrame([(1, 1)]).createOrReplaceTempView("temp_tab") |
| spark.sql("CREATE TABLE tab1 (name STRING, age INT) USING parquet") |
| spark.sql("CREATE TABLE some_db.tab2 (name STRING, age INT) USING parquet") |
| |
| schema = StructType([StructField("a", IntegerType(), True)]) |
| description = "this a table created via Catalog.createTable()" |
| spark.catalog.createTable( |
| "tab3_via_catalog", schema=schema, description=description) |
| |
| tables = sorted(spark.catalog.listTables(), key=lambda t: t.name) |
| tablesDefault = \ |
| sorted(spark.catalog.listTables("default"), key=lambda t: t.name) |
| tablesSomeDb = \ |
| sorted(spark.catalog.listTables("some_db"), key=lambda t: t.name) |
| self.assertEqual(tables, tablesDefault) |
| self.assertEqual(len(tables), 3) |
| self.assertEqual(len(tablesSomeDb), 2) |
| self.assertEqual(tables[0], Table( |
| name="tab1", |
| database="default", |
| description=None, |
| tableType="MANAGED", |
| isTemporary=False)) |
| self.assertEqual(tables[1], Table( |
| name="tab3_via_catalog", |
| database="default", |
| description=description, |
| tableType="MANAGED", |
| isTemporary=False)) |
| self.assertEqual(tables[2], Table( |
| name="temp_tab", |
| database=None, |
| description=None, |
| tableType="TEMPORARY", |
| isTemporary=True)) |
| self.assertEqual(tablesSomeDb[0], Table( |
| name="tab2", |
| database="some_db", |
| description=None, |
| tableType="MANAGED", |
| isTemporary=False)) |
| self.assertEqual(tablesSomeDb[1], Table( |
| name="temp_tab", |
| database=None, |
| description=None, |
| tableType="TEMPORARY", |
| isTemporary=True)) |
| self.assertRaisesRegex( |
| AnalysisException, |
| "does_not_exist", |
| lambda: spark.catalog.listTables("does_not_exist")) |
| |
| def test_list_functions(self): |
| from pyspark.sql.catalog import Function |
| spark = self.spark |
| with self.database("some_db"): |
| spark.sql("CREATE DATABASE some_db") |
| functions = dict((f.name, f) for f in spark.catalog.listFunctions()) |
| functionsDefault = dict((f.name, f) for f in spark.catalog.listFunctions("default")) |
| self.assertTrue(len(functions) > 200) |
| self.assertTrue("+" in functions) |
| self.assertTrue("like" in functions) |
| self.assertTrue("month" in functions) |
| self.assertTrue("to_date" in functions) |
| self.assertTrue("to_timestamp" in functions) |
| self.assertTrue("to_unix_timestamp" in functions) |
| self.assertTrue("current_database" in functions) |
| self.assertEqual(functions["+"], Function( |
| name="+", |
| description=None, |
| className="org.apache.spark.sql.catalyst.expressions.Add", |
| isTemporary=True)) |
| self.assertEqual(functions, functionsDefault) |
| |
| with self.function("func1", "some_db.func2"): |
| spark.catalog.registerFunction("temp_func", lambda x: str(x)) |
| spark.sql("CREATE FUNCTION func1 AS 'org.apache.spark.data.bricks'") |
| spark.sql("CREATE FUNCTION some_db.func2 AS 'org.apache.spark.data.bricks'") |
| newFunctions = dict((f.name, f) for f in spark.catalog.listFunctions()) |
| newFunctionsSomeDb = \ |
| dict((f.name, f) for f in spark.catalog.listFunctions("some_db")) |
| self.assertTrue(set(functions).issubset(set(newFunctions))) |
| self.assertTrue(set(functions).issubset(set(newFunctionsSomeDb))) |
| self.assertTrue("temp_func" in newFunctions) |
| self.assertTrue("func1" in newFunctions) |
| self.assertTrue("func2" not in newFunctions) |
| self.assertTrue("temp_func" in newFunctionsSomeDb) |
| self.assertTrue("func1" not in newFunctionsSomeDb) |
| self.assertTrue("func2" in newFunctionsSomeDb) |
| self.assertRaisesRegex( |
| AnalysisException, |
| "does_not_exist", |
| lambda: spark.catalog.listFunctions("does_not_exist")) |
| |
| def test_list_columns(self): |
| from pyspark.sql.catalog import Column |
| spark = self.spark |
| with self.database("some_db"): |
| spark.sql("CREATE DATABASE some_db") |
| with self.table("tab1", "some_db.tab2"): |
| spark.sql("CREATE TABLE tab1 (name STRING, age INT) USING parquet") |
| spark.sql( |
| "CREATE TABLE some_db.tab2 (nickname STRING, tolerance FLOAT) USING parquet") |
| columns = sorted(spark.catalog.listColumns("tab1"), key=lambda c: c.name) |
| columnsDefault = \ |
| sorted(spark.catalog.listColumns("tab1", "default"), key=lambda c: c.name) |
| self.assertEqual(columns, columnsDefault) |
| self.assertEqual(len(columns), 2) |
| self.assertEqual(columns[0], Column( |
| name="age", |
| description=None, |
| dataType="int", |
| nullable=True, |
| isPartition=False, |
| isBucket=False)) |
| self.assertEqual(columns[1], Column( |
| name="name", |
| description=None, |
| dataType="string", |
| nullable=True, |
| isPartition=False, |
| isBucket=False)) |
| columns2 = \ |
| sorted(spark.catalog.listColumns("tab2", "some_db"), key=lambda c: c.name) |
| self.assertEqual(len(columns2), 2) |
| self.assertEqual(columns2[0], Column( |
| name="nickname", |
| description=None, |
| dataType="string", |
| nullable=True, |
| isPartition=False, |
| isBucket=False)) |
| self.assertEqual(columns2[1], Column( |
| name="tolerance", |
| description=None, |
| dataType="float", |
| nullable=True, |
| isPartition=False, |
| isBucket=False)) |
| self.assertRaisesRegex( |
| AnalysisException, |
| "tab2", |
| lambda: spark.catalog.listColumns("tab2")) |
| self.assertRaisesRegex( |
| AnalysisException, |
| "does_not_exist", |
| lambda: spark.catalog.listColumns("does_not_exist")) |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.sql.tests.test_catalog import * # noqa: F401 |
| |
| try: |
| import xmlrunner # type: ignore[import] |
| testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |